Abstract:
Techniques are provided for establishing a Virtual Desktop Interface (VDI) connection at a virtual desktop thin client (VDTC) device, between a VDI client in the VDTC device and a VDI server in a hosted virtual desktop server (HVDS). A unified communications (UC) control connection is established between a UC protocol stack on the VDTC device and a primary call agent, where the UC control connection is configured to allow the UC protocol stack to register with the primary call agent, and to send or receive commands from the primary call agent that are based on signals from a UC control application running on the HVDS. A UC control backup application is started on the virtual desktop thin client device in a standby mode that is configured to switch to an active mode in response to a failure to establish or maintain the UC control connection, or a failure to establish or maintain the VDI connection. A user interface is launched on the virtual desktop thin client device that is configured to perform UC backup functions.
Abstract:
Techniques are provided for establishing a Unified Communications (UC) session between a client endpoint device and remote endpoint devices, the client endpoint device managing the session using a first-party call control protocol in response to commands from a third-party control protocol and user input. A hosted virtual desktop (HVD) generates an HVD image and communicates it to the client endpoint device for display, via a virtual desktop interface (VDI) protocol. The HVD image comprises a UC user interface generated by a UC application on the HVD, the user interface comprising at least one user interface element and at least one placeholder where a client-provided user interface element may be inserted. A client UC application receives the HVD image and inserts client-provided user interface elements over the placeholders before sending the integrated image to a client operating system to be rendered on the display of client endpoint device.
Abstract:
A device for implementing thermally assisted magnetic recording, using a TE mode laser diode, and method for using it, are described. This device is shaped internally so as to provide three-dimensional self-focusing of plasmon radiation, thereby improving the coupling efficiency between the optical wave-guide and the plasmon generator as a result of ensuring a large overlap between these two modes.
Abstract:
A TAMR (Thermal Assisted Magnetic Recording) write head uses the energy of optical-laser excited surface plasmons in a scalable planar plasmon generator to locally heat a magnetic recording medium and reduce its coercivity and magnetic anisotropy. The planar plasmon generator is formed as a multi-layered structure in which one planar layer supports a propagating surface plasmon mode that is excited by evanescent coupling to an optical mode in an adjacent waveguide. A peg, which can be a free-standing element or an integral projection from one of the layers, is positioned between the ABS end of the generator and the surface of the recording medium, confines and concentrates the near field of the plasmon mode immediately around and beneath it.
Abstract:
A PMR writer is disclosed that minimizes pole erasure during non-writing and maximize write field during writing through an AFM-FM phase change material that is in an anti-ferromagnetic (AFM) state during non-writing and switches to a ferromagnetic (FM) state by heating during writing. The main pole layer including the write pole may be comprised of a laminated structure having a plurality of “n” ferromagnetic layers and “n−1” AFM-FM phase change material layers arranged in an alternating manner. The AFM-FM phase change material is preferably a FeRh, FeRhPt, FeRhPd, or FeRhIr and may also be used as a flux gate to prevent yoke flux from leaking into the write pole tip. Heating for the AFM to FM transition is provided by write coils and/or a coil located near the AFM-FM phase change material to enable faster transition times.
Abstract:
A method of forming a TAMR (Thermal Assisted Magnetic Recording) write head that uses the energy of optical-laser generated edge plasmons in a plasmon antenna to locally heat a magnetic recording medium and reduce its coercivity and magnetic anisotropy. The method incorporates forming a magnetic core within the plasmon antenna, so the antenna effectively becomes an extension of the magnetic pole and produces a magnetic field whose maximum gradient overlaps the region being heated by the edge plasmons generated in the conducting layer of the antenna surrounding the antenna's magnetic core.
Abstract:
A TAMR (Thermal Assisted Magnetic Recording) writer has a narrow pole tip with a trailing edge magnetic shield. The narrow pole tipped write head uses the energy of laser generated edge plasmons, formed in a plasmon generating layer, to locally heat a PMR magnetic recording medium below its Curie temperature, Tc. When combined with the effects of the narrow tip, this local heating to a temperature below Tc is sufficient to create good transitions and narrow track widths in the magnetic medium. The write head is capable of writing effectively on state-of-the-art PMR recording media having Hk of 20 kOe or more.
Abstract:
A PMR writer with a tapered main pole layer and tapered non-magnetic top-shaping layer is disclosed that minimizes trailing shield saturation. A second non-magnetic top shaping layer may be employed to reduce the effective TH size while the bulk of the trailing shield is thicker to allow a larger process window for back end processing. A sloped surface with one end at the ABS and a second end 0.05 to 0.3 microns from the ABS is formed at a 10 to 80 degree angle to the ABS and includes a sloped surface on the upper portion of the main pole layer and on the non-magnetic top shaping layer. An end is formed on the second non-magnetic top shaping layer at the second end of the sloped surface followed by forming a conformal write gap layer and then depositing the trailing shield on the write gap layer and along the ABS.
Abstract:
A waveguide structure for a TAMR head is disclosed wherein at least one detection waveguide is formed parallel to a main waveguide and located a gap distance therefrom. A light source transmits light into the main waveguide and towards an ABS/medium interface. A plasmon generator converts light from the waveguide into plasmon waves that are directed onto a magnetic medium. Back reflected light is captured by the main waveguide, partially diverted into a detection waveguide, and transmitted to a photo detector that measures light intensity (IB) which correlates closely to the plasmon wave intensity at the ABS/medium interface. A controller linked to the photo detector is employed to calculate IB as a function of ABS/medium spacing in a non-write condition and this relationship can be used to control and maintain a constant plasmon wave intensity at the ABS during a series of TAMR write processes with a plurality of media.
Abstract:
A laminated write pole layer for a PMR write head is disclosed in which a plurality of “n” magnetic layers and “n−1” non-magnetic spacers are formed in an alternating fashion on a substrate. The non-magnetic spacers promote exchange decoupling or antiferromagnetic coupling between adjacent magnetic layers. Writability is improved when the trailing magnetic layer has a thickness greater than the thickness of other magnetic layers and preferably >25% of the total thickness of the magnetic layers. The thicknesses of the other magnetic layers may be equal or may become progressively smaller with increasing distance from the trailing magnetic layer. In another embodiment, the non-magnetic spacer between the trailing magnetic layer and the nearest magnetic layer is replaced by a magnetic spacer made of a soft magnetic material to promote magnetic coupling and effectively increase the thickness of the trailing magnetic layer.