摘要:
The present invention relates to automatic absorption means positioning in X-ray image acquisition. To improve image quality and to optimize the radiation exposure of an object, optimal position for X-ray absorption means is provided. A first sequence (113) of X-ray images is acquired (112). For each of the images, the optimal position (115) for X-ray absorption means is determined (114). A second sequence (117) of X-ray images is associated 10 (116) with corresponding images of the first sequence. The determined optimal position for the absorption means (14) of the associated corresponding images of the first sequence (113) is selected for an acquisition of the second sequence (117). Hence, a situation-specific database with optimized positions for the absorption means is generated on behalf of the first sequence in order to provide the generated position information for the actual acquisition of a 15 second sequence of images.
摘要:
An adaptive roadmapping device and method for examination of an object include providing pre-navigation image data representing part of the object being a vascular structure including an element of interest and having a tree-like structure with a plurality of sub-trees; generating a vessel representation based on the pre-navigation image data; acquiring live image data of the object; determining spatial relation of the pre-navigation image data and the live image data; analyzing the live image data by identifying and localizing the element in the live image data; determining a sub-tree in which the element is positioned, where the determining is based on the localization of the element and on the spatial relation; selecting a portion of the vascular structure based on the determined sub-tree; generating a combination of the live image data and an image of the selected portion of the vascular structure; and displaying the combination as a tailored roadmap.
摘要:
The invention relates to a system and a method for producing an image of a physical object and to a computer program element and a computer readable medium. In order to provide improved stent boost subtract also showing wire state information, a system and a method are provided, the method comprising the following steps: a) tracking a predetermined first feature (126) and a predetermined second feature (128) in a first plurality (114) of first images (116), which images reveal a first criterion (118); and determining a first feature transform; and determining second feature distortion vector fields relative to the first feature transform; b) associating and recording second feature distortion vector fields corresponding to at least two phase attributes (120); c) tracking the predetermined first feature (126) in at least one secondary image (142) which image reveals a second criterion; d) determining a first-feature-based inter-criterion the first-feature-based inter-phase transform and the second feature distortion vector fields corresponding to a matching phase attribute (120); and f) generating a combined inter-criterion image (162) based on the restored physical distortion.
摘要:
The present invention relates to accurate positioning for vessel intervention procedures, particularly to a method for accurate positioning for vessel intervention procedures, a medical imaging system for accurate positioning for vessel intervention procedures and a catheterization laboratory system for accurate positioning for vessel intervention procedures. First, at least one X-ray image of a vessel region of interest is acquired (24) with injected contrast agent. Further, vessel information data is identified (26) within the at least one acquired image. Then, first calcification features of the vessel in the vessel region of interest in the at least one acquired image are detected (28). Further, vessel representation is generated (30) using the vessel information data and the detected calcification features. Further, at least one current fluoroscopic image of the vessel region of interest is acquired (32). Then, second calcification features of the vessel in the vessel region of interest in the at least one current fluoroscopy image are detected (34), wherein the second calcification features are according to the first calcification features. Further, the vessel representation is registered (36) with the fluoroscopy image, wherein the calcification features are used for the registration. Then, a composite image is generated (38) by combining the vessel representation with the at least one fluoroscopy image. Further, a composite image is displayed (40).
摘要:
According to an exemplary embodiment of the present invention, a cardiac roadmapping technique is provided, that does not rely on the prerequisite of a phase-centric pairing of the angiogram and life images. Instead, both the pairing and accurate registration of the images are combined within a single operation, for example by using a multi-device map. This may provide for robust and precise cardiac roadmapping.
摘要:
X-ray images are projective, meaning that the 3D geometry is flattened along projection lines going from the source to the detector. In particular procedures, such as mapping or ablation, the interventional instrument lies on the wall of the organ. Using a 3D segmentation of this organ registered to the x-ray, the instrument necessarily lies on the intersection of this surface with its projection line. The line and the surface typically intersect with a segmentation surface at a discrete number of points (typically 2 for shapes such as the anterior of the LA). One then has just to disambiguate between these different possible locations to determine the exact location of the instrument. In this invention, we propose to use the apparent width of the instrument measured in x-ray images to accomplish this task.
摘要:
Cardiac roadmapping consists in correctly overlaying a vessel map sequence derived from an angiogram acquisition onto a fluoroscopy sequence used during PTCA intervention. This enhanced fluoroscopy sequence however suffers from several drawbacks such as breathing motion, high noise level, and most of all suboptimal contrast-enhanced mask due to segmentation defaults. This invention proposes to reverse the process and to locally overlay the intervention device as seen in fluoroscopy onto an optimal contrast-enhanced image of a corresponding cycle. This drastically reduces or suppresses the breathing motion, it provides the high image quality standard of angiograms, and avoids segmentation defaults. This proposal could lead to a brand new navigation practice in PCI procedures.
摘要:
A medical viewing system with an X-ray image acquisition device for acquiring angiograms and interventional live images of vessels is adapted for generating a region of interest border into which an object referenced by an object-based registration process must extend in order to achieve an accurate registration of vessel trees extracted from the angiogram and the live images. The region of interest border is then overlaid onto the vessel tree images and the live images. The medical viewing system reminds the person accomplishing the intervention of the importance of pushing the object far enough into the image, while being discrete enough to be ignored if preferred, thus yielding in a reliable and precise road mapping processing.
摘要:
According to an exemplary embodiment of the present invention, a cardiac roadmapping technique is provided, in which a static roadmap is built onto which a view of the intervention device is projected at the correct location. This new viewing mode combines the advantages of both roadmapping, i.e. accurate localization, and the advantages of a motion-free view, i.e. maximum readability.
摘要:
The present invention relates to a system for guiding a medical instrument in a patient body. Such a system comprises means for acquiring a 2D X-ray image of said medical instrument, means for acquiring a 3D ultrasound data set of said medical instrument using an ultrasound probe, means for localizing said ultrasound probe in a referential of said X-ray acquisition means, means for selecting a region of interest around said medical instrument within the 3D ultrasound data set and means for generating a bimodal representation of said medical instrument detection by combining said 2D X-ray image and said 3D ultrasound data set. A bimodal representation is generated on the basis of the 2D X-ray image by replacing the X-ray intensity value of points belonging to said region of interest by the ultrasound intensity value of the corresponding point in the 3D ultrasound data set.