摘要:
One embodiment of the present invention is a sensor comprising one or more sensing devices, data-transmission components that transmit sensor data to a receiving component, and a processing component. The processing component executes routines to record sensing-device output as data for transmission to the receiving entity and to control the data-transmission components to transmit the data to the receiving entity. The processing component executes one or more compressing routines to compress data prior to transmission, when data compression is estimated to result in a lower power cost than transmitting uncompressed data, and controlling the data-transmission components to transmit data without compressing the data when data compression is estimated to result in a higher power cost than transmitting uncompressed data.
摘要:
A distinguished node is dynamically selected from a subset of nodes in a wireless network. Data samples from the subset of nodes are received in view of the distinguished node status. At least one estimate is generated from the data samples and the data samples are compressed conditioned on the estimate.
摘要:
A distinguished node is dynamically selected from a subset of nodes in a wireless network. Data samples from the subset of nodes are received in view of the distinguished node status. At least one estimate is generated from the data samples and the data samples are compressed conditioned on the estimate.
摘要:
One embodiment of the present invention is a sensor comprising one or more sensing devices, data-transmission components that transmit sensor data to a receiving component, and a processing component. The processing component executes routines to record sensing-device output as data for transmission to the receiving entity and to control the data-transmission components to transmit the data to the receiving entity. The processing component executes one or more compressing routines to compress data prior to transmission, when data compression is estimated to result in a lower power cost than transmitting uncompressed data, and controlling the data-transmission components to transmit data without compressing the data when data compression is estimated to result in a higher power cost than transmitting uncompressed data.
摘要:
One embodiment of the present invention is directed to an adaptive context-based predictor that predicts a value {circumflex over (x)} from a context, stored in an electronic memory, corresponding to a noisy-dataset symbol zi of a noisy dataset corrupted with noise modeled as being introduced by a noise-introducing channel. The adaptive context-based predictor is adapted according to one or more parameters that specify adaptive context-based-predictor operation, at least one of which functionally depends, or partially functionally depends, on a level of noise represented by the noise-introducing channel. The adaptive context-based predictor computes a number of intermediate values from the context, computes the predicted value {circumflex over (x)} from the intermediate values, and stores the predicted value {circumflex over (x)} in the electronic memory.
摘要:
In various embodiments of the present invention, a binary mask corresponding to a noisy symbol sequence is produced to indicate which of the symbols in the noisy symbol sequence has potentially been modified, or altered, by a noisy channel. DUDE, DUDE-CTI, and other denoising methods are modified to employ the bit mask in order to avoid the computational overhead and potential errors incurred in attempting to denoise symbols that are not likely to have been altered by the noisy channel.
摘要:
A number of methods and systems for efficiently storing defective-memory-location tables. A asymmetrical-distortion-model vector quantization method and a run-length quantization method for compressing a defective-memory-location bit map that identifies defective memory locations within a memory are provided. In addition, because various different compression/decompression methods may be suitable for different types of defect distributions within a memory, a method is provided to select the most appropriate compression/decompression method from among a number of compression/decompression methods as most appropriate for a particular defect probability distribution. Finally, bit-map compression and the figure-of-merit metric for selecting an appropriate compression technique may enable global optimization of error-correcting codes and defective memory-location identification.
摘要:
One embodiment of the present invention is directed to an adaptive context-based predictor that predicts a value {circumflex over (x)} from a context, stored in an electronic memory, corresponding to a noisy-dataset symbol zi of a noisy dataset corrupted with noise modeled as being introduced by a noise-introducing channel. The adaptive context-based predictor is adapted according to one or more parameters that specify adaptive context-based-predictor operation, at least one of which functionally depends, or partially functionally depends, on a level of noise represented by the noise-introducing channel. The adaptive context-based predictor computes a number of intermediate values from the context, computes the predicted value {circumflex over (x)} from the intermediate values, and stores the predicted value {circumflex over (x)} in the electronic memory.
摘要:
A first node receives aggregated compressed data and unaggregated data from a second node in a wireless multi-hop network. The first node compresses its own collected data based on the received unaggregated data. The first node aggregates its own compressed data with the aggregated compressed data received from the second node. The first node forwards an unaggregated version of its own collected data along with aggregated compressed data to a next hop in the wireless multi-hop network.
摘要:
A denoising process or system uses convex optimization to determine characteristics of a clean signal. In one embodiment, a noisy signal that represents a set of symbols can be scanned to determine an empirical vector with components respectively indicating respective empirical probabilities of symbols in the noisy signal that occur in a particular context. A convex optimization process can then identify a vector such that a difference between the empirical vector and a product of the identified vector and a channel matrix is minimized. The identified vector can be used to determine when a symbol in the noisy signal should be replaced when assembling a reconstructed signal.