摘要:
A data processing system includes an interconnect and first and second nodes, coupled to the interconnect, that each include at least one agent. Each agent within the first and second nodes outputs a snoop response in response to snooping a transaction on the interconnect. Utilizing the snoop response of each agent within the first node, first response logic within the first node produces a first cumulative combined response. This first cumulative combined response is then combined by second response logic in the second node with the snoop response of each agent in the second node to produce a second cumulative combined response. After a complete combined response is obtained in this manner, the complete combined response is distributed to all nodes so that each agent can determine its response, if any, to the transaction.
摘要:
A data processing system includes a plurality of nodes, which each contain at least one agent and each have an associated node identifier, and memory distributed among the plurality of nodes. The data processing system further includes an interconnect containing a segmented data channel, where each node contains a segment of the segmented data channel and each segment is coupled to at least one other segment by destination logic. In response to snooping a write request of a master agent on the interconnect, a target agent that will service the write request places its node identifier in a snoop response. When the master agent receives the combined response, which contains the node identifier of the target agent, the master agent issues on the segmented data channel a write data transaction specifying the node identifier of the target agent as a destination identifier. In response to receipt of the write data transaction, the destination logic transmits the write data transaction to a next segment only if the destination identifier does not match a node identifier associated with a node containing a current segment.
摘要:
A data processing system includes a plurality of nodes, which each contain at least one agent, and data storage accessible to agents within the nodes. The plurality of nodes are coupled by a non-hierarchical interconnect including multiple non-blocking uni-directional address channels and at least one uni-directional data channel. The agents, which are each coupled to and snoop transactions on all of the plurality of address channels, can only issue transactions on an associated address channel. The uni-directional channels employed by the present non-hierarchical interconnect architecture permit high frequency pumped operation not possible with conventional bi-directional shared system buses. In addition, access latencies to remote (cache or main) memory incurred following local cache misses are greatly reduced as compared with conventional hierarchical systems because of the absence of inter-level (e.g., bus acquisition) communication latency. The non-hierarchical interconnect architecture also permits design flexibility in that the segment of the interconnect within each node can be independently implemented by a set of buses or as a switch, depending upon cost and performance considerations.
摘要:
A multiprocessor system bus protocol system and method for processing and handling a processor request within a multiprocessor system having a number of bus accessible memory devices that are snooping on. at least one bus line. Snoop response groups which are groups of different types of snoop responses from the bus accessible memory devices are provided. Different transfer types are provided within each of the snoop response groups. A bus master device that provides a bus master signal is designated. The bus master device receives the processor request. One of the snoop response groups and one of the transfer types are appropriately designated based on the processor request. The bus master signal is formulated from a snoop response group, a transfer type, a valid request signal, and a cache line address. The bus master signal is sent to all of the bus accessible memory devices on the cache bus line and to a combined response logic system. All of the bus accessible memory devices on the cache bus line send snoop responses in response to the bus master signal based on the designated snoop response group. The snoop responses are sent to the combined response logic system. A combined response by the combined response logic system is determined based on the appropriate combined response encoding logic determined by the designated and latched snoop response group. The combined response is sent to all of the bus accessible memory devices on the cache bus line.
摘要:
A data processing system includes at least first and second nodes and a segmented interconnect having coupled first and second segments. The first node includes the first segment and first and second agents coupled to the first segment, and the second node includes the second segment and a third agent coupled to the second segment. The first node further includes cancellation logic that, in response to the first agent issuing a request on the segmented interconnect that propagates from the first segment to the second segment and the second agent indicating ability to service the request, sends a cancellation message to the third agent instructing the third agent to ignore the request.
摘要:
A data processing system includes an interconnect, a plurality of nodes coupled to the interconnect that each include at least one agent, response logic within each node, and a queue. In response to snooping a transaction on the interconnect, each agent outputs a snoop response. In addition, the queue, which has an associated agent, allocates an entry to service the transaction. The response logic within each node accumulates a partial combined response of its node and any preceding node until a complete combined response for all of the plurality of nodes is obtained. However, prior to the associated agent receiving the complete combined response, the queue speculatively deallocates the entry if the partial combined response indicates that an agent other than the associated agent will service the transaction.
摘要:
The symmetric multiprocessor system includes multiple processing nodes, with multiple agents at each node, connected to each other via an interconnect. A request transaction is initiated by a master agent in a master node to all receiving nodes. A write counter number is generated for associating with the request transaction. The master agent then waits for a combined response from the receiving nodes. After the receipt of the combined response, a data packet is sent from the master agent to all intended one of the receiving nodes according to the combined response. After the data packet has been sent, the master agent in the master node is ready to send another request transaction along with a new write counter number, without the necessity of waiting for an acknowledgement from the receiving node.
摘要:
A method for informing a processor of a selected order of transmission of data to the processor. The method comprises the steps of coupling system components via a data bus to the processor to effectuate data transfer, determining at the system component logic the order in which to transmit data to the processor, and issuing to the data bus a selected order bit concurrent with the data, wherein the selected order bit alerts the processor of the order and the data is transmitted in that order. In a preferred embodiment, the system component is the cache and the method may involve receiving at the cache a preference of ordering for a read address/request from the processor. The preference order logic of the cache controller or a preference order logic component evaluates the preference of ordering desired by comparing the processor preference with other preferences, including cache order preference. One preference order is selected and the data is then retrieved from a cache line of the cache in the order selected.
摘要:
A method for informing a processor of a selected order of transmission of data to the processor. The method comprises the steps of coupling system components via a data bus to the processor to effectuate data transfer, determining at the system component logic the order in which to transmit data to the processor, and issuing to the data bus a selected order bit concurrent with the data, wherein the selected order bit alerts the processor of the order and the data is transmitted in that order. In a preferred embodiment, the system component is the cache and the method may involve receiving at the cache a preference of ordering for a read address/request from the processor. The preference order logic of the cache controller or a preference order logic component evaluates the preference of ordering desired by comparing the processor preference with other preferences, including cache order preference. One preference order is selected and the data is then retrieved from a cache line of the cache in the order selected.
摘要:
A method for selecting an order of data transmittal based on system bus utilization of a data processing system. The method comprises the steps of coupling system components to a processor within the data processing system to effectuate data transfer, dynamically determining based on current system bus loading, an order in which to retrieve and transmit data from the system component to the processor, and informing the processor of the order selected by issuing to the data bus a plurality of selected order bits concurrent with the transmittal of the data, wherein the selected order bit alerts the processor of the order and the data is transmitted in that order. In a preferred embodiment, the system component is a cache and a system monitor monitors the system bus usage/loading. When a read request appears at the cache, the modified cache controller preference order logic or a preference order logic component determines the order to transmit the data wherein the order is selected to substantially optimize data bandwidth when the system bus usage is high and selected to substantially optimize data latency when system bus usage is low.