摘要:
Systems and methodologies are described that facilitate providing time-division duplexed beam-forming support in traditionally non-time-division duplexed wireless systems, such as an OFDMA system, a WCDMA system, etc. According to an aspect, a base station can analyze pilot information, such as a portion of bandwidth over which a user device is transmitting, and can transmit on the downlink using pre-hopped portion of bandwidth utilized by the user device on the preceding reverse link time slot. The base station can additionally transmit bandwidth segment reassignments to the user device to facilitate bandwidth segment hopping between user devices served by the base station. Additionally, the base station can instruct the user device to provide on-demand pilot information to resolve ambiguity related thereto.
摘要:
Systems and methodologies are described that facilitate providing time-division duplexed beam-forming support in traditionally non-time-division duplexed wireless systems, such as an OFDMA system, a WCDMA system, etc. According to an aspect, a base station can analyze pilot information, such as a portion of bandwidth over which a user device is transmitting, and can transmit on the downlink using pre-hopped portion of bandwidth utilized by the user device on the preceding reverse link time slot. The base station can additionally transmit bandwidth segment reassignments to the user device to facilitate bandwidth segment hopping between user devices served by the base station. Additionally, the base station can instruct the user device to provide on-demand pilot information to resolve ambiguity related thereto.
摘要:
In a single-carrier frequency division multiple access (SC-FDMA) system that utilizes interleaved FDMA (IFDMA) or localized FDMA, multiple transmitters may transmit their pilots using time division multiplexing (TDM), code division multiplexing (CDM), interleaved frequency division multiplexing (IFDM), or localized frequency division multiplexing (LFDM). The pilots from these transmitters are then orthogonal to one another. A receiver performs the complementary demultiplexing for the pilots sent by the transmitters. The receiver may derive a channel estimate for each transmitter using an MMSE technique or a least-squares technique. The receiver may receive overlapping data transmissions sent on the same time-frequency block by the multiple transmitters and may perform receiver spatial processing with spatial filter matrices to separate these data transmissions. The receiver may derive the spatial filter matrices based on the channel estimates for the transmitters and using zero-forcing, MMSE, or maximal ratio combining technique.
摘要:
In a single-carrier frequency division multiple access (SC-FDMA) system that utilizes interleaved FDMA (IFDMA) or localized FDMA, multiple transmitters may transmit their pilots using time division multiplexing (TDM), code division multiplexing (CDM), interleaved frequency division multiplexing (IFDM), or localized frequency division multiplexing (LFDM). The pilots from these transmitters are then orthogonal to one another. A receiver performs the complementary demultiplexing for the pilots sent by the transmitters. The receiver may derive a channel estimate for each transmitter using an MMSE technique or a least-squares technique. The receiver may receive overlapping data transmissions sent on the same time-frequency block by the multiple transmitters and may perform receiver spatial processing with spatial filter matrices to separate these data transmissions. The receiver may derive the spatial filter matrices based on the channel estimates for the transmitters and using zero-forcing, MMSE, or maximal ratio combining technique.
摘要:
In a single-carrier frequency division multiple access (SC-FDMA) system that utilizes interleaved FDMA (IFDMA) or localized FDMA (LFDMA), a transmitter generates modulation symbols for different types of data (e.g., traffic data, signaling, and pilot) and performs code division multiplexing (CDM) on at least one data type. For example, the transmitter may apply CDM on signaling and/or pilot sent on frequency subbands and symbol periods that are also used by at least one other transmitter. To apply CDM to a given data type (e.g., signaling), the transmitter performs spreading on the modulation symbols for that data type with an assigned spreading code. CDM may be applied across symbols, samples, samples and symbols, frequency subbands, and so on. The transmitter may perform scrambling after the spreading. The transmitter generates SC-FDMA symbols of the same or different symbol durations for traffic data, signaling, and pilot and transmits the SC-FDMA symbols.
摘要:
In a single-carrier frequency division multiple access (SC-FDMA) system that utilizes interleaved FDMA (IFDMA) or localized FDMA (LFDMA), a transmitter generates modulation symbols for different types of data (e.g., traffic data, signaling, and pilot) and performs code division multiplexing (CDM) on at least one data type. For example, the transmitter may apply CDM on signaling and/or pilot sent on frequency subbands and symbol periods that are also used by at least one other transmitter. To apply CDM to a given data type (e.g., signaling), the transmitter performs spreading on the modulation symbols for that data type with an assigned spreading code. CDM may be applied across symbols, samples, samples and symbols, frequency subbands, and so on. The transmitter may perform scrambling after the spreading. The transmitter generates SC-FDMA symbols of the same or different symbol durations for traffic data, signaling, and pilot and transmits the SC-FDMA symbols.
摘要:
Providing for management of wireless communications in a heterogeneous wireless access point (AP) environment is described herein. By way of example, system data of an over-the-air message can be configured to include information identifying a distinct type of transmitting base station. In some aspects, the information can include an access type of the base station and/or a sector ID for distinguishing the base station among large numbers of other base stations. According to other aspects, the information can include wireless channel resources designated for a particular type of base station, or blanked by the transmitting base station, to facilitate interference reduction on such resources. By employing aspects of wireless communication management disclosed herein, efficient and reliable communication can be affected in large heterogeneous AP networks.
摘要:
Signaling-only access may be established with an access node under certain circumstances such as, for example, upon determining that a node is not authorized for data access at the access node. A node that is not authorized for data access at an access node may still be paged by the access node through the use of signaling-only access. In this way, transmissions by the access node may not interfere with the reception of pages at the node. A first node may be selected for providing paging while a second node is selected for access under certain circumstances such as, for example, upon determining that the second node provides more desirable service than the first node.
摘要:
Techniques for transmitting data with short-term interference mitigation in a wireless communication system are described. In one design, a first station (e.g., a base station or a terminal) may send a first message to at least one interfering station to request reduction of interference on at least one resource. The first station may send the first message in anticipation of receiving data on the at least one resource. An interfering station may receive the first message from the first station and may reduce interference on the at least one resource by reducing its transmit power and/or by steering its power in a direction different from the first station. The first station may thereafter receive data from a second station on the at least one resource. The techniques may be used for data transmission on the forward and reverse links.
摘要:
Techniques for sending control information in a wireless communication system are described. A control segment may include L≧1 tiles, and each tile may include a number of transmission units. A number of control resources may be defined and mapped to the transmission units for the control segment. For symmetric mapping, multiple sets of S≧1 control resources may be formed, and each batch of L consecutive sets of S control resources may be mapped to S transmission units at the same location in the L tiles. For localized mapping, S>1, and each set of S control resources may be mapped to a cluster of S adjacent transmission units in one tile. For distributed mapping, S=1, and each control resource may be mapped to one transmission unit in one tile. For diversity, each control resource may be mapped to multiple (e.g., three) transmission units in at least one tile.