Abstract:
A system and method are provided for creating magnetic resonance (MR) images with reduced motion artifacts from the MR data from which the images are produced. The method includes selecting a candidate image from a plurality of candidate images reconstructed from the MR data. The method also includes registering the candidate image to a reference image, comparing the candidate image to a consistency map, and, based on comparing the candidate image using the consistency map, selecting a blending algorithm. The method also includes generating a blended image using the blending algorithm and the candidate image and repeating these steps for each candidate image. The method also includes performing a Fourier aggregation to generate a combined image and displaying the combined image with reduced motion artifacts compared to the plurality of candidate images.
Abstract:
A system and method are provided for creating magnetic resonance (MR) images with reduced motion artifacts from the MR data from which the images are produced. The method includes selecting a candidate image from a plurality of candidate images reconstructed from the MR data. The method also includes registering the candidate image to a reference image, comparing the candidate image to a consistency map, and, based on comparing the candidate image using the consistency map, selecting a blending algorithm. The method also includes generating a blended image using the blending algorithm and the candidate image and repeating these steps for each candidate image. The method also includes performing a Fourier aggregation to generate a combined image and displaying the combined image with reduced motion artifacts compared to the plurality of candidate images.
Abstract:
A method for designing one or more multichannel, multiband radio frequency (“RF”) pulses for use with a magnetic resonance imaging (“MRI”) system is provided. The method includes determining a number of RF amplitude modulations and a number of RF phase modulations for each channel in a multichannel RF coil by minimizing an objective function that includes a complex-valued vector. The objective function also contains a system matrix that accounts for both a spatial sensitivity profile of each channel in the multichannel RF coil and a magnetic field map for each excitation band in the multiband RF pulse.
Abstract:
A system and method for producing images depicting a plurality of slice locations in a subject using a magnetic resonance imaging (“MRI”} system is provided. In particular, the system and method utilize time-shifted multiband radio frequency (“RF”} pulses to lower peak voltage and peak power requirements when using conventional multiband RF pulses. A time-shifted multiband RF pulse includes at least two component RF pulses, which may be single-band or multiband pulses. The component RF pulses are designed such that they do not have temporal footprints that completely overlap; although, they may have temporal foot-prints that partially overlap or do not overlap at all. The MRI system is used to acquire magnetic resonance signals formed in response to a time-shifted multiband RF pulse and, from these acquired signals, images depicting each of the plurality of slice locations in the subject are reconstructed.
Abstract:
A system and method for producing images depicting a plurality of slice locations in a subject using a magnetic resonance imaging (“MRI”} system is provided. In particular, the system and method utilize time-shifted multiband radio frequency (“RF”} pulses to lower peak voltage and peak power requirements when using conventional multiband RF pulses. A time-shifted multiband RF pulse includes at least two component RF pulses, which may be single-band or multiband pulses. The component RF pulses are designed such that they do not have temporal footprints that completely overlap; although, they may have temporal foot-prints that partially overlap or do not overlap at all. The MRI system is used to acquire magnetic resonance signals formed in response to a time-shifted multiband RF pulse and, from these acquired signals, images depicting each of the plurality of slice locations in the subject are reconstructed.