Abstract:
The present invention provides a process for recovery of propylene and LPG from the fuel gas produced in FCC unit by contacting a heavier hydrocarbon feed with FCC catalyst. The process provides an energy efficient configuration for revamping an existing unit constrained on wet gas compressor capacity or for designing a new gas concentration unit to recover propylene and LPG recovery beyond 97 mole %. The process of the present invention provides an increase propylene and LPG recovery without loading wet gas compressor with marginal increase in liquid loads.
Abstract:
A process for catalytic conversion of low value hydrocarbon streams to light olefins in comparatively higher yields is disclosed. Propylene is obtained in amounts higher than 20 wt. % and ethylene higher than 6 wt. %. The process is carried out in a preheated cracking reactor having a single riser and circulating an FCC catalyst. The riser is divided into three temperature zones in which different hydrocarbon feeds are introduced. An oxygenate feed is introduced in the operative top zone in the riser. Heat for the endothermic cracking is obtained by the exothermic reaction of converting the oxygenate feed into gas and/or from a regenerator in which the spent FCC catalyst is burnt.