Abstract:
Methods, systems and apparatus are provided for camping, assisted serving cell addition or removal, and discontinuous reception (DRX) in networks having a macro cell and at least one assisted serving cell. In other aspects, enhancements to Layer 1 channels and uplink timing alignments are provided in networks having a macro cell and at least one assisted serving cell. In further aspects, assisted serving cell Layer 2 architecture and transport channels are provided in networks having a macro cell and at least one assisted serving cell. In further aspects, collaborated HARQ solutions are provided in networks having a macro cell and at least one assisted serving cell.
Abstract:
In some implementations, a method in a wireless network includes allocating a radio resource to a plurality of transmitters. The radio resource is configured for simultaneously transmitting and receiving user data with varying transmission delays. User data bursts are received, from the plurality of transmitters, with varying transmission delays transmitted over the allocated radio resource with varying resource identities.
Abstract:
Described herein is a system with a first network element and a second network element. The first network element contains a processor configured to synchronize with the second network element; and maintain synchronization with the second network element. The first network element is a small cell eNB and the second network element is one of the following: a macro cell enhanced node-B (eNB); or a small cell eNB.
Abstract:
A method and network node for managing a relay node that is moving relative to a source network node, the method ensuring a target network node is capable of supporting the relay node; sending a handover request of a relay node from the source network node to the target network node; and establishing an interface between the relay node and the target network node.
Abstract:
Systems and methods for user equipment (UE) for inter-device communication authorization and data sniffing in wireless communication systems are provided. A UE may communicate directly with another UE over a direct inter-device communication link when they are located in proximity. The UE may receive data sniffing related parameters corresponding to the inter-device communication link from a network entity, e.g. a mobile management entity (MME). The UE may store data exchanged over the inter-device communication link in a buffer and upload the stored data to a secure server in a network periodically or upon receiving a request from the network. Long term evolution (LTE) downlink or uplink radio resources may be used for the data exchange over the inter-device communication link.
Abstract:
Systems, methods, and apparatuses for initiation of inter-device communication in wireless communication systems are provided. Both a user equipment (UE) and a network entity may initiate a direct inter-device communication link between UEs located in proximity. The UE may simultaneously maintain an active communication link with its serving base station while communicating with other UEs over the inter-device communication link. Long term evolution (LTE) downlink or uplink radio resources may be used for communications over the inter-device communication link.
Abstract:
Methods, devices and systems for improved transmission in a remote node-based wireless communication system is provided. In one embodiment, a method of wireless communication comprises receiving a downlink signal from a first node, demodulating said received downlink signal, generating a channel quality measurement (“CQM”) value of said demodulated downlink signal, determining said CQM value exceeds a first threshold, modulating said demodulated downlink signal to form a processed downlink signal, and cooperatively transmitting said processed downlink signal with said first node to a wireless device.
Abstract:
Systems, methods, and apparatuses for data and/or control offloading and handover in heterogeneous wireless communication networks are provided. Data and/or control packets can be offloaded to a coordinating base station while a user equipment (UE) remains associated with its serving cell. The packets are still transferred between the serving base station and the core network, and the offloaded data and/or control packets are forwarded from the serving base station to the coordinating base station for transmission to the UE. Furthermore, during a handover process, the serving base station and coordinating base station may independently schedule and send a handover command to the UE to reduce the radio link failure rate.
Abstract:
Systems, apparatuses, and methods for a handover procedure in heterogeneous networks are provided. In particular, an intermediate handover (IHO) is introduced. Certain aspects of the disclosure involve, a method, performed at a first base station of a wireless communications network. An indication that a user equipment (UE) is receiving coverage signal from a second base station can be received. A data packet destined for the UE can be transmitted to the second base station. A communications link with the UE can be maintained after transmitting the data packet to the second base station.
Abstract:
Methods, devices and systems for improved transmission in a remote node-based wireless communication system is provided. In one embodiment, a method of wireless communication comprises receiving a downlink signal from a first node, demodulating said received downlink signal, generating a channel quality measurement (“CQM”) value of said demodulated downlink signal, determining said CQM value exceeds a first threshold, modulating said demodulated downlink signal to form a processed downlink signal, and cooperatively transmitting said processed downlink signal with said first node to a wireless device.