摘要:
A gain and phase control system performs a gain (or phase) adjustment based on the results of a previous gain (or phase) adjustment after an intervening phase (or gain) adjustment. A gain adjustment is based on the results of a previous gain adjustment rather than on the results of an intervening phase adjustment. A phase adjustment is based on the results of a previous phase adjustment rather than the results of an intervening gain adjustment. As such, the above-mentioned increase in error signal does not occur because a gain adjustment is based on the results of the previous gain adjustment, and a phase adjustment is based on the results of the previous phase adjustments. In accordance with another aspect of the present invention, the gain and phase control system makes a gain (or phase) adjustment in parallel with detecting the results from a previous phase (or gain) adjustment, thereby taking advantage of the delay between adjustment and detection of the resulting error signal to improve the convergence rate. For example, the gain and phase control system can perform single alternating gain and phase adjustments and make a gain (or phase) adjustment while detecting the error signal resulting from a preceding phase (or gain) adjustment. When the error signal resulting from the gain (or phase) adjustment is being detected, the gain and phase control system makes a phase (or gain) adjustment using the results detected from the preceding phase (or gain) adjustment.
摘要:
An adaptive gain and/or phase control system adapts the gain and/or phase adjustment resolution to provide improved performance. For example, the adaptive gain and/or phase control system can dynamically adjust the adjustment resolution for gain and/or phase adjustments as a function of the error signal(s). In response to a large error signal(s) (far from the null), the adaptive gain/or phase control system decreases the adjustment resolution, resulting in a faster convergence rate. In a feed forward distortion reduction system, decreasing the adjustment resolution improves the transient response of the amplifier (for example, given any set of operating conditions, how quickly the amplifier responds to a changing input). As phase or gain adjustments are made to approach the null, the error signal reduces, and the adaptive distortion reduction system increases the adjustment resolution. By increasing the adjustment resolution as the error signal approaches the null, finer phase or gain adjustments can be made which further reduce the error signal. For example, in a feed forward distortion reduction system, such a scheme prevents the error signal from repeatedly jumping over the null due to limited resolution without sacrificing the transient response of the amplifier.
摘要:
An automatic control system for reducing distortion produced by electrical circuit where a pilot signal pulse is applied to the electrical circuit for a period of time during which the system determines the adjustments to be made to its circuitry to reduce the distortion.
摘要:
The invention is a repeater for a telecommunications transmission system such as a CDMA wireless system. The repeater reduces leakage by using a feedback signal whose amplitude and phase are adjusted in response to the amplitude and phase of a sampled input signal when a switch turns off the normal output of the repeater for a short period of time. In one embodiment, a pilot signal is transmitted during this time period so that the sampled input is the leakage signal. In another embodiment, the sampled input is the normal transmission signal received during the time period.
摘要:
Disclosed is a channelized multi-carrier signal processor capable of equalizing power levels of individual carriers of a multi-carrier signal to within a predetermined dynamic range. In one embodiment, the signal processor includes a power splitter for splitting a multi-carrier input signal into a plurality of electrical paths. In each electrical path there resides a signal modifier that is operable to isolate signal energy associated with a given carrier of the multi-carrier signal. Each signal modifier includes an automatic gain control (AGC) circuit to control the power level of the carrier isolated therein to within a predetermined power level window so that the isolated carriers of each signal modifier are equalized in power. A power combiner then combines the equalized carriers to produce a multi-carrier output signal, which can be applied to a limited dynamic range device such as an A/D converter. Preferably, the carriers are isolated with the use of a tunable frequency synthesizer and a down-converting mixer within each signal modifier. This arrangement provides flexibility as to the frequencies which can be used for the modulated carriers of the multi-carrier input signal.
摘要:
A nested feed forward distortion reduction system, which reduces the distortion from a main amplifier on a main signal path, uses a nested feed forward arrangement for the correction amplifier to reduce the distortion produced from the correction amplifier. In reducing the distortion from the correction amplifier(s) and using progressively higher quality correction amplifier(s), the nested feed forward arrangement produces an improved, more stable representation of the distortion from the main amplifier, thereby alleviating the need for variable gain and/or phase control in producing amplified signal with reduced distortion.
摘要:
The present invention is a feed forward circuit and method for reducing distortion added to an output signal of the feed forward by its amplifiers without increasing the time delay in the main circuit path of the feed forward circuit. This is accomplished using a pre-distortion circuit to introduce a pre-distortion signal to the input signal of a correction amplifier. The pre-distortion signal is being used to cancel a distortion signal that will be introduced by the correction amplifier. The pre-distortion signal has approximately the same frequency and amplitude as the distortion signal. The pre-distortion signal, however, has a phase difference of approximately 180.degree. with respect to the distortion signal such that the pre-distortion signal and the distortion signal cancel each other when combined.
摘要:
A pilot signal detection system uses a band reject filter to reject the frequency band of at least one carrier signal to improve pilot signal detection. For example, in a feed forward distortion reduction system, the carrier signal(s) is on a main signal path along with a pilot signal which is injected into the main signal path at a frequency adjacent to the frequency band of the carrier signal(s). The carrier signal(s) and the pilot signal are amplified on the main signal path, resulting in distortion on the main signal path. To reduce the distortion from the main signal path, the feed forward distortion reduction system detects and reduces the pilot signal. To improve detection of the pilot signal, the pilot signal detection system provides a signal representative of the carrier signal(s) and the pilot signal with distortion from the main signal path onto a pilot detection path. A band reject filter on the pilot detection path rejects the frequency band of the carrier signal(s) while allowing the frequency of the pilot signal to pass through to pilot detect circuitry. Without the presence of the carrier signal(s), the pilot detect circuitry can more accurately detect the pilot signal on the pilot detection path. In response to the detected pilot signal, the pilot detect circuitry can provide control signal(s) to improve the reduction of the pilot signal by changing the relative phase and/or gain between the signals on the main signal path and the feed forward path. Thus, by improving the detection of the pilot signal, the pilot detection system improves the reduction of the pilot signal and thereby of the distortion.
摘要:
A direction sensor is provided in an automatic control circuit which is incorporated into a distortion reduction circuit. The direction sensor is comprised of a test switch, first and second storage devices, a comparison device, a normalization device and a sampling control device. The direction sensor conducts a series of consecutive test cycles, comprised of even numbered test cycles and odd numbered test cycles, and during each test cycle a sample of the test signal is taken. During the even numbered test cycles the sampling control device causes the test switch to transfer an even numbered sample of the test signal to the first storage device and thereafter to the first input of the comparison device, where the even numbered sample is compared with an earlier in time odd numbered sample at the second input of the comparison device. The comparison device produces a first comparison signal indicative of the relative value of the samples. During odd numbered test cycles, the sampling control device is adapted to cause the test switch to transfer an odd numbered sample of the test signal to the second storage device and thereafter to the second input of the comparison device, where the odd numbered sample is compared with an earlier in time even numbered sample at the first input of the comparison device. The comparison device produces a second comparison signal indicative of the relative value of the samples. A normalization signal from the sampling control device and the comparison signal from the comparison device are combined to produce a direction signal.
摘要:
A frequency mixing system provides an expanded dynamic range when compared to the dynamic range(s) of an individual mixer(s) that make up the arrangement. The frequency mixing system uses a feed-forward arrangement to reduce the distortion emanating from a single mixer due to a signal power level which would result in a frequency converted signal outside the dynamic range of the mixer. For example, the frequency mixing system splits an input signal onto a first path and a second path. On the first path, a first mixer frequency mixes the signal to produce a frequency converted signal with distortion, such as intermodulation distortion. On the second path, the amplitude of the signal is attenuated then frequency mixed by a second mixer to produce a frequency converted signal with a low and/or insignificant level of distortion. The first mixer element produces a frequency converted signal with distortion because the signal on the first path enters the first mixer at a power level resulting in a frequency converted signal outside the dynamic range of the first mixer. As such, the higher power level of the signal into the first mixer creates distortion that emanates from the first mixer along with the frequency converted signal. Since the attenuated signal on the second path enters the second mixer at a lower power level resulting in a frequency converted signal within the dynamic range of the second mixer, the second mixer produces the frequency converted signal with the low and/or insignificant level of distortion. After the signals on the first and second paths are frequency converted, the frequency converted signal and distortion are coupled from the first path and combined with the frequency converted signal on the second path, producing the distortion as the prominent signal on the second path. The distortion on the second path is then combined with the frequency converted signal and distortion on the first path to cancel the distortion on the first path and produce the desired frequency converted signal with reduced distortion as compared to the distortion produced if the original input signal would be frequency converted using only the first mixer.