摘要:
The present disclosure generally pertains to systems and methods for passing timing information over packet networks. In one exemplary embodiment of the present disclosure, a transmitter inserts a timestamp into various packets being transmitted. A receiver determines the packet delay for each of these packets. The receiver monitors the packet delays of received packets over time to estimate a minimum packet delay for the network. Thereafter, the receiver uses the timestamps of received packets in order to update a local receiver clock signal so that the local receiver clock signal is synchronous to the clock signal used by the transmitter to generate the timestamps. However, the receiver filters the received timestamps such that the effects of packet delay variation to the synchronization of the local clock signals are reduced.
摘要:
A loop loss measurement and reporting mechanism for a digital data services unit obviates interaction with a test unit at a far end of the loop, by relying upon a priori knowledge of the signal power and spectral content of a data port at the far end of the loop to conduct threshold detection and power level measurements. A received signal is amplified by amplifier circuitry, the gain of which is controllably adjusted by the microcontroller based upon the outputs of threshold detectors and power level measurement circuitry that monitor the amplified received signal. A front panel display is controlled by the microcontroller to display loop loss parameter information. To measure and report loop loss, the digital data services unit turns off its transmitter for a prescribed period of time and monitors an in-band signal of known power and spectral content sourced from the far end of the loop. In response to this measurement it iteratively adjusts, as necessary, the amplifier gains, and illuminates the LED display device in accordance with the power measurement.
摘要:
A loop loss measurement and reporting mechanism for a digital data services unit obviates interaction with a test unit at a far end of the loop, by relying upon a priori knowledge of the signal power and spectral content of a data port at the far end of the loop to conduct threshold detection and power level measurements. A received signal is amplified by amplifier circuitry, the gain of which is controllably adjusted by the microcontroller based upon the outputs of threshold detectors and power level measurement circuitry that monitor the amplified received signal. A front panel display is controlled by the microcontroller to display loop loss parameter information. To measure and report loop loss, the digital data services unit turns off its transmitter for a prescribed period of time and monitors an in-band signal of known power and spectral content sourced from the far end of the loop. In response to this measurement it iteratively adjusts, as necessary, the amplifier gains, and illuminates the LED display device in accordance with the power measurement.