摘要:
A system is disclosed for enhancing video by use of a virtual surface. One or more positions are identified in a first image. These one or more positions are transformed to one or more locations in relation to the virtual surface. In subsequent video images (e.g. fields, frames, or other units), the one or more locations in relation to said virtual surface are transformed to one or more positions in the subsequent video images. The subsequent video images are enhanced based on the one or more transformed positions.
摘要:
A telestrator system is disclosed that allows a broadcaster to annotate video during or after an event. For example, while televising a sporting event, an announcer (or other user) can use the present invention to draw over the video of the event to highlight one or more actions, features, etc. In one embodiment, when the announcer draws over the video, it appears that the announcer is drawing on the field or location of the event. Such an appearance can be performed by mapping the pixels location from the user's drawing to three dimensional locations at the event. Other embodiments include drawing on the video without obscuring persons and/or other specified objects, and/or smoothing the drawings in real time.
摘要:
A telestrator system is disclosed that allows a broadcaster to annotate video during or after an event. For example, while televising a sporting event, an announcer (or other user) can use the present invention to draw over the video of the event to highlight one or more actions, features, etc. In one embodiment, when the announcer draws over the video, it appears that the announcer is drawing on the field or location of the event. Such an appearance can be performed by mapping the pixels location from the user's drawing to three dimensional locations at the event. Other embodiments include drawing on the video without obscuring persons and/or other specified objects, and/or smoothing the drawings in real time.
摘要:
A telestrator system is disclosed that allows a broadcaster to annotate video during or after an event. For example, while televising a sporting event, an announcer (or other user) can use the present invention to draw over the video of the event to highlight one or more actions, features, etc. In one embodiment, when the announcer draws over the video, it appears that the announcer is drawing on the field or location of the event. Such an appearance can be performed by mapping the pixels location from the user's drawing to three dimensional locations at the event. Other embodiments include drawing on the video without obscuring persons and/or other specified objects, and/or smoothing the drawings in real time.
摘要:
A system is disclosed for blending two image that makes use of a color map which indicates colors in a foreground can be mixed with the background and how much of each source to mix. One embodiment of the invention restricts the use of the color map to only pixels in the foreground that correspond to a graphic (or effect) in the background. Another embodiment makes use of a gray scale matte which stores blending values for each pixel in the foreground.
摘要:
A telestrator system is disclosed that allows a broadcaster to annotate video during or after an event. For example, while televising a sporting event, an announcer (or other user) can use the present invention to draw over the video of the event to highlight one or more actions, features, etc. In one embodiment, when the announcer draws over the video, it appears that the announcer is drawing on the field or location of the event. Such an appearance can be performed by mapping the pixels location from the user's drawing to three dimensional locations at the event. Other embodiments include drawing on the video without obscuring persons and/or other specified objects, and/or smoothing the drawings in real time.
摘要:
A system for communicating video data in a digital media device includes an application layer having one or more applications and further includes a device driver layer associated with an operating system and video hardware of the digital media device. A video abstraction layer (VAL) coupled to the application layer and to the device driver layer includes a send queue containing ordered references to buffers that are each capable of containing video data. The VAL also includes a receive queue containing ordered references to buffers each capable of containing video data. The send queue and receive queue are used in substantially the same manner for both incoming video data received into the digital media device and outgoing video data to be communicated from the digital media device.