摘要:
The present invention relates to the efficient removal of low density lipoprotein cholesterol complex (LDL-C) from whole blood. More specifically, it relates to the use of an immobilized affinity agent on a microporous plasmapheresis membrane. The immobilized affinity agent is polyacrylic acid bound directly and/or through an interaction with silica and/or calcium chloride to a microporous hollow fiber membrane.
摘要:
The present invention relates to the efficient removal of low density lipoprotein cholesterol complex (LDL-C) from whole blood. More specifically, it relates to a process for making a microporous plasmapheresis membrane having an immobilized affinity agent. The immobilized affinity agent is polyacrylic acid bound directly and/or through an interaction with silica and/or calcium chloride to a microporous hollow fiber membrane.
摘要:
The present invention relates to the efficient removal of low density lipoprotein cholesterol complex (LDL-C) from whole blood. More specifically, it relates to a process for making a microporous plasmapheresis membrane having an immobilized affinity agent. The immobilized affinity agent is polyacrylic acid bound directly and/or through an interaction with silica and/or calcium chloride to a microporous hollow fiber membrane.
摘要:
The present invention relates to the efficient removal of low density lipoprotein cholesterol complex (LDL-C) from whole blood. More specifically, it relates to a microporous plasmapheresis support having an immobilized affinity agent. The immobilized affinity agent is polyacrylic acid bound directly and/or through an interaction with silica and/or calcium chloride to a microporous polysulfone support.
摘要:
The present invention relates to the efficient removal of low density lipoprotein cholesterol complex (LDL-C) from whole blood. More specifically, it relates to the use of an immobilized affinity agent on a microporous plasmapheresis membrane. The immobilized affinity agent is polyacrylic acid bound directly and/or through an interaction with silica and/or calcium chloride to a microporous hollow fiber membrane.