摘要:
There is provided a method of making a hollow fiber having improved resistance to microfracture formation at a fiber-matrix interface. The method includes mixing in a first solvent a plurality of nanostructures, one or more first polymers, and a fugitive polymer which is dissociable from the nanostructures and the one or more first polymers, to form an inner-volume portion mixture. The method further includes mixing in a second solvent one or more second polymers to form an outer-volume portion mixture, spinning the inner-volume portion mixture and the outer-volume portion mixture and extracting the fugitive polymer from the inner-volume portion mixture to form a precursor fiber, heating the precursor fiber to oxidize the precursor fiber and to change a molecular-bond structure of the precursor fiber, and obtaining a hollow fiber with the inner-volume portion having the nanostructures and the first polymers, and with the outer-volume portion having the second polymers.
摘要:
In one embodiment is provided a polymer blend of poly(vinyl acetate) (PVAc) and poly(acrylic acid) (PAA), wherein the poly(vinylacetate) is present in an amount ranging between about 20 wt % and about 80 wt %, and poly(acrylic acid) is present in an amount ranging between about 80 wt % and about 20 wt %, based on the total weight of the blend. In another embodiment is provided a fiber produced from this polymer blend, and which has cells therein. In another embodiment is provided a flavorant release material comprising the porous fiber disclosed herein, and one or more flavorants disposed in a longitudinally extending core within the fiber. In another embodiment is provided a polymer fiber membrane containing a hollow, porous fiber formed from the polymer blend disclosed herein. In another embodiment is provided a filter containing the fiber described herein. In another embodiment is provided a process for producing the fibers disclosed herein by addition of the polymers to an extruder or blender, and extruding or melt spinning the mixture into a fiber containing cells therein.
摘要:
A yarn comprising gel forming filaments or fibers particularly one used to make a woven or knitted wound dressing or other gelling fabric structure. The invention provides a yarn comprising a blend of from 30% to 100% by weight of gel-forming fibers and 0% to 70% by weight of textile fibers. Process for making the yarns are also described including those using rotor spinning.
摘要:
In one embodiment, a fiber treatment system includes a rotatable nubbed roller including an axis 5 of rotation, a surface, and a number of spaced apart nubs projecting away from the surface, the number of spaced apart nubs imparting a number of spaced apart openings in a fiber tow. In another embodiment, the fiber treatment system further includes an optionally 10 rotatable spreader roller for flattening the fiber tow. In yet another embodiment, the loosened, but still continuous fiber tow is chopped by a downstream chopper to form short fibers with reduced tow sizes.
摘要:
The present invention relates to a regenerated cellulose fiber, which is characterized by the combination of the following features: the fiber has in its dry condition a collapsed hollow cross-sectional structure the fiber has in its wet condition a cross-sectional structure with cavities the fiber is segmented in the longitudinal direction by dividing walls there is incorporated into the fiber an absorbent polymer, in particular carboxymethylcellulose. The fiber may be obtained by a process, wherein there is admixed a carbonate as well as an absorbent polymer, in particular carboxymethylcellulose, to a viscose dope.
摘要:
The invention relates to a catalyst molded body for preparing maleic anhydride by gas-phase oxidation of a hydrocarbon having at least four carbon atoms using a catalytically active composition containing vanadium, phosphorus and oxygen. The shaped catalyst body has an essentially cylindrical body having a longitudinal axis. The cylindrical body has at least two parallel internal holes which are essentially parallel to the cylinder axis of the body and go right through the body. The catalyst molded body has a large outer surface area, a lower pressure loss and sufficient mechanical stability.
摘要:
A fiber structure for propagating one or more zero group-velocity modes is provided. The fiber structure includes a cladding arrangement comprising a photonic crystal having a complete bandgap at a specified index. A core is formed in a selective region of the cladding arrangement. The core allows the propagation of the one or more group-velocity modes.
摘要:
Processes for forming polymer fibers, comprising: (a) providing a colloidal dispersion of at least one essentially water-insoluble polymer in an aqueous medium; and (b) electrospinning the colloidal dispersion; polymer fibers prepared by such processes; and colloidal dispersions comprising: at least one essentially water-insoluble polymer in an aqueous medium; and at least 10% by weight of a water-soluble polymer having a solubility in water of at least 0.1% by weight.
摘要:
Described herein are nanofibers and methods for making nanofibers that have a plurality of pores. The pores have of any suitable size or shape. In some embodiments the pores are “mesopores”, having a diameter between 2 and 50 nm. In some embodiments, the pores are “ordered”, meaning that they have a substantially uniform shape, a substantially uniform size and/or are distributed substantially uniformly through the nanofiber. Ordering of the pores results in a high surface area and/or high specific surface area. Ordered pores, without limitation, result in a nanofiber that is substantially flexible and/or non-brittle. The nanofibers and methods for making nanofibers may be used, without limitation, in batteries, capacitors, electrodes, solar cells, catalysts, adsorbers, filters, membranes, sensors, fabrics and/or tissue regeneration matrixes.
摘要:
The present disclosure provides a flame retardant composition as well as fibers comprising a matrix and an additive wherein each of the matrix and the additive is independently selected from Ultra High Molecular weight Polyethylene (UHMPE) and Polyphosphazene (PPZ) and wherein, when the matrix is UHMPE, the additive is PPZ and when the matrix is PPZ, the additive is UHMPE. Further the present disclosure provides a process of melt spinning the flame retardant composition of a matrix and an additive wherein each of the matrix and the additive is independently selected from UHMPE and PPZ and wherein, when the matrix is UHMPE, the additive is PPZ and when the matrix is PPZ, the additive is UHMPE to obtain flame retardant fibers. The flame retardant fibers of the present disclosure has various industrial and medicinal applications