摘要:
A FinFET body contact structure and a method for creating the FinFET body contact structure are disclosed. The body contact structure comprises a wide fin portion of a semiconductor fin, the wide fin portion having a polysilicon polygon shape formed on a top surface of the wide fin portion. The polysilicon polygon shape has a center area having no polysilicon. FinFETs are formed on two vertical surfaces of the wide fin portion and gates of the FinFETs are coupled to the polysilicon polygon shape. Top surfaces of the wide fin portion and the polysilicon polygon shape are silicided. Silicide bridging is prevented by sidewall spacers. All convex angles on the polysilicon polygon shape are obtuse enough to prevent creation of bridging vertices. The center area is doped of an opposite type from a source and a drain of an associated FinFET.
摘要:
A FinFET body contact structure and a method for creating the FinFET body contact structure are disclosed. The body contact structure comprises a wide fin portion of a semiconductor fin, the wide fin portion having a polysilicon polygon shape formed on a top surface of the wide fin portion. The polysilicon polygon shape has a center area having no polysilicon. FinFETs are formed on two vertical surfaces of the wide fin portion and gates of the FinFETs are coupled to the polysilicon polygon shape. Top surfaces of the wide fin portion and the polysilicon polygon shape are silicided. Silicide bridging is prevented by sidewall spacers. All convex angles on the polysilicon polygon shape are obtuse enough to prevent creation of bridging vertices. The center area is doped of an opposite type from a source and a drain of an associated FinFET.
摘要:
An apparatus and method are disclosed for measuring bias of polysilicon shapes relative to a silicon area wherein the presence of an electrical coupling is used to determine the presence of bias. Bridging vertices on the polysilicon shapes are formed. Bridging vertices over the silicon area create low resistance connections between those bridging vertices and the silicon area; other bridging vertices over ROX (recessed oxide) areas do not create low resistance connections between those other bridging vertices and the silicon area. Determining which bridging vertices have low resistance connections to the silicon area and how many bridging vertices have low resistance connections to the silicon area are used to determine the bias of the polysilicon shapes relative to the silicon area.
摘要:
An apparatus for measuring alignment of polysilicon shapes to a silicon area. Each polysilicon shape in a first plurality of polysilicon shapes has a bridging vertex positioned near the silicon area. Each polysilicon shape in a second plurality of polysilicon shapes has a bridging vertex positioned near the silicon area. The second plurality of silicon shapes is positioned on the opposite side of the silicon area from the first plurality of silicon shapes. An electrical measurement of how many of the polysilicon shapes in the first plurality of polysilicon shapes and in the second plurality of polysilicon shapes provides a measurement of alignment of the polysilicon shapes and the silicon area.
摘要:
An apparatus for measuring a structural characteristic between a polysilicon shape and a silicon area. The apparatus for measuring a structural characteristic between a polysilicon shape and a silicon area comprises the silicon area, and a plurality of polysilicon shapes each having a unique orientation relative to the silicon area wherein each of the polysilicon shapes is formed having an angle less than or equal to a critical angle. The critical angle is an angle at or below which a sidewall spacer no longer is formed on a polysilicon shape, thereby causing the polysilicon shape to short circuit to an underlying portion of the silicon area by way of a silicide bridge.
摘要:
A method is disclosed for measuring alignment of polysilicon shapes relative to a silicon area wherein the presence of an electrical coupling is used to determine the presence of bias or misalignment. Bridging vertices on the polysilicon shapes are formed. Bridging vertices over the silicon area create low resistance connections between those bridging vertices and the silicon area; other bridging vertices over ROX (recessed oxide) areas do not create low resistance connections between those other bridging vertices and the silicon area. Determining which bridging vertices have low resistance connections to the silicon area and how many bridging vertices have low resistance connections to the silicon area are used to determine the bias and misalignment of the polysilicon shapes relative to the silicon area.
摘要:
A method and circuit for implementing an embedded dynamic random access memory (eDRAM), and a design structure on which the subject circuit resides are provided. The embedded dynamic random access memory (eDRAM) circuit includes a stacked field effect transistor (FET) and capacitor. The capacitor is fabricated directly on top of the FET to build the eDRAM.
摘要:
A method and circuit for implementing an embedded dynamic random access memory (eDRAM), and a design structure on which the subject circuit resides are provided. The embedded dynamic random access memory (eDRAM) circuit includes a stacked field effect transistor (FET) and capacitor. The capacitor is fabricated directly on top of the FET to build the eDRAM.
摘要:
A method and an eFuse programming circuit for implementing resistance determination of an eFuse before initiating eFuse blow, and a design structure on which the subject circuit resides are provided. An eFuse on a chip is used to set current flow through a known resistor and measure the eFuse resistance. An applied voltage to program selected eFuses on the chip is selected responsive to an identified eFuse voltage value.
摘要:
A method and an eFuse programming circuit for implementing resistance determination of an eFuse before initiating eFuse blow, and a design structure on which the subject circuit resides are provided. An eFuse on a chip is used to set current flow through a known resistor and measure the eFuse resistance. An applied voltage to program selected eFuses on the chip is selected responsive to an identified eFuse voltage value.