摘要:
A polyether composition comprised of a polyether, a functionalizing catalyst and a metal cyanide catalyst is formed by forming a functionalized initiator compound by reacting a precursor initiator compound with a functionalizing compound and a functionalizing catalyst to form the functionalized initiator compound, forming a mixture of the functionalized initiator compound containing at least a portion of the functionalizing catalyst, an alkylene oxide and a metal cyanide catalyst complex, and subjecting the mixture to conditions sufficient to activate the catalyst complex and to alkoxylate the functionalized initiator compound to form the polyether. The functionalized initiator compound may be of a vegetable oil, animal fat or modified vegetable oil or modified animal fat. The functionalizing catalyst may be a tin, titanium, iodine, rhodium, nickel, acid or enzyme catalyst.
摘要:
Ethoxylations of various initiator compounds are performed in the presence of metal cyanide catalysts. The catalysts surprisingly form a wide variety of polyether products that in most cases contain only small amounts of high molecular weight poly(ethylene oxide).
摘要:
Polyether polyols having equivalent weights of up to 500 are continuously prepared in the presence of a double metal cyanide catalyst. A first step of the reaction is performed at a temperature of at least 1500 C, while controlling the hydroxyl content and unreacted alkylene oxide content of the reaction mixture to within certain ranges. A portion of that reaction mixture is withdrawn and permitted to react non-isothermally to consume the unreacted alkylene oxide. This process is highly efficient, does not result in catalyst deactivation, as is commonly seen in previous processes, and does not produce a significant ultra high molecular weight tail.
摘要:
Polycarbonate prepolymers are produced by adding phosgene, one or more dihydric phenols, a halogenated organic solvent, and an aqueous caustic solution together with mixing in motionless mixers to form fine dispersions of partially phosgenated phenols, allowing for interfacial reactions to occur in residence time sections and repeating the steps after the addition of caustic to form high molecular weight prepolymers. These prepolymers are then polymerized with amines to form high molecular weight polycarbonates.
摘要:
The present disclosure relates, according to some embodiments, to compositions, apparatus, methods, and systems that may be used to produce polyols, for example, polyether polyols with a narrow range of molecular weights, with little if any unsaturated byproducts, in a sustained and/or continuous reaction, with efficient heat transfer, and/or at high production rates. For example, in some embodiments, teachings of the disclosure may be used to produce polyether polyols in a continuous loop flow process. A continuous loop flow process may be practiced such that heat is effectively transferred and/or product properties (e.g., range of molecular weights) are controllable. For example, a continuous loop flow process may use one or more continuous flow loops comprising a heat exchanger, a means to move material around each loop, inlets for catalyst, monomer, initiator or starter, and an outlet for polyol product.
摘要:
Organic materials are stripped and dried in a single column having two contact zones. A stripping gas is introduced into an upper contact zone and flows through the organic material in that zone. A drying gas is introduced into a lower contact zone. The drying gas contacts the organic material in both the upper and lower contact zones, and is removed from the top of the column together with the stripping gas. This process permits very efficiently removal of volatile organic compounds as well as efficient drying, while requiring on low levels of the stripping and drying gasses.
摘要:
Polyether polyols having equivalent weights of up to 500 are continuously prepared in the presence of a double metal cyanide catalyst. A first step of the reaction is performed at a temperature of at least 150° C., while controlling the hydroxyl content and unreacted alkylene oxide content of the reaction mixture to within certain ranges. A portion of that reaction mixture is withdrawn and permitted to react non-isothermally to consume the unreacted alkylene oxide. This process is highly efficient, does not result in catalyst deactivation, as is commonly seen in previous processes, and does not produce a significant ultra high molecular weight tail.
摘要:
Organic materials are stripped and dried in a single column having two contact zones. A stripping gas is introduced into an upper contact zone and flows through the organic material in that zone. A drying gas is introduced into a lower contact zone. The drying gas contacts the organic material in both the upper and lower contact zones, and is removed from the top of the column together with the stripping gas. This process permits very efficiently removal of volatile organic compounds as well as efficient drying, while requiring on low levels of the stripping and drying gasses.
摘要:
A continuous process and system for producing polyether polyols that allows for continuously adding an unreacted oxide to a loop reactor while adding at least one thermally deactivating catalyst capable of thermally deactivating prior to decomposition of polyether polyol which can allow for greater concentrations of unreacted oxides and/or a rate of reaction in the loop reactor is at a rate at least two times faster than a rate of reaction in a loop reactor containing less than 14 weight percent unreacted oxide. In a preferred embodiment, the catalyst is a double metal cyanide catalyst and a plug flow reactor is formed in series with the loop reactor wherein neither reactor contains a vapor space.
摘要:
Polycarbonate prepolymers are produced by adding phosgene, one or more dihydric phenols, a halogenated organic solvent, and an aqueous caustic solution together with mixing in motionless mixers to form fine dispersions of partially phosgenated phenols, allowing for interfacial reactions to occur in residence time sections and repeating the steps after the addition of caustic to form high molecular weight prepolymers. These prepolymers are then polymerized with amines to form high molecular weight polycarbonates.