Abstract:
An electron gun having: a cathode for emitting electrons; a first Wehnelt electrode equipped with a first aperture through which electrons are allowed to pass; and a second Wehnelt electrode that is equipped with a second aperture disposed at a predetermined position with respect to the cathode and the first aperture, and that is furnished at a position closer to the cathode than the first Wehnelt electrode, wherein: the cathode and the second Wehnelt electrode are included within a single assembly constituting a unitary body; and the assembly is detachably attached to the first Wehnelt electrode. Replacement of the cathode can be performed by detaching the cathode unit from the first Wehnelt electrode, and then ejecting the cathode unit out from the Wehnelt cover. The emitter of the cathode can thereby be reliably positioned with respect to the second aperture.
Abstract:
There is provided a technique for non-destructively and relatively easily acquiring orientation information of an anisotropic material even for a large-sized object. An object is irradiated with X-rays in a tangential direction of a curved anisotropic material from a radiation source of a phase-contrast X-ray optical system. A scattering image is then obtained using a detection signal of X-rays having penetrated through the object. Structure information of the anisotropic material is acquired based on the scattering image.
Abstract:
An X-ray image generation device includes a moving mechanism that moves an object relative to a grating part in a direction crossing X-rays emitted toward the grating part. The grating part includes N (2≤N) regions along the direction of movement by the moving mechanism. A cyclic direction of a grating structure in each of the plurality of gratings belonging to an ith (1≤i≤N−1) region out of the N regions and a cyclic direction of a grating structure in each of the plurality of gratings belonging to an (i+1)th region out of the N regions are different directions. The plurality of gratings are configured so that moiré interference fringes generated in the N regions have a cyclic intensity fluctuation measurable by the detector and of at least one cycle or more in the direction of movement by the moving mechanism.
Abstract:
First ROI pixel values of a first region of interest 101 of a radiographic intensity distribution image 10, and second ROI pixel values of a second region of interest 102 of the radiographic intensity distribution image 10, are acquired. One of the first and second regions of interest is set to be at a position, or vicinity thereof, where a phase difference in the intensity modulation period within the radiographic intensity distribution image, with respect to the other region of interest, becomes π/2. Next, an elliptical locus obtained by plotting the first and second ROI pixel values for each radiographic intensity distribution image is determined. k angle region images are then acquired using the radiographic intensity distribution images corresponding to at least k angle regions that have been obtained by dividing the elliptical locus for each given angle. A radiographic image is then generated using the k angle region images. k is an integer of three or more.
Abstract:
An X-ray image generation device includes a moving mechanism that moves an object relative to a grating part in a direction crossing X-rays emitted toward the grating part. The grating part includes N (2≤N) regions along the direction of movement by the moving mechanism. A cyclic direction of a grating structure in each of the plurality of gratings belonging to an ith (1≤i≤N−1) region out of the N regions and a cyclic direction of a grating structure in each of the plurality of gratings belonging to an (i+1)th region out of the N regions are different directions. The plurality of gratings are configured so that moiré interference fringes generated in the N regions have a cyclic intensity fluctuation measurable by the detector and of at least one cycle or more in the direction of movement by the moving mechanism.
Abstract:
First ROI pixel values of a first region of interest 101 of a radiographic intensity distribution image 10, and second ROI pixel values of a second region of interest 102 of the radiographic intensity distribution image 10, are acquired. One of the first and second regions of interest is set to be at a position, or vicinity thereof, where a phase difference in the intensity modulation period within the radiographic intensity distribution image, with respect to the other region of interest, becomes π/2. Next, an elliptical locus obtained by plotting the first and second ROI pixel values for each radiographic intensity distribution image is determined. k angle region images are then acquired using the radiographic intensity distribution images corresponding to at least k angle regions that have been obtained by dividing the elliptical locus for each given angle. A radiographic image is then generated using the k angle region images. k is an integer of three or more.
Abstract:
An X-ray generation device includes: a sealed X-ray tube including a cathode and an anode; a magnetic field generation portion applying a magnetic field to the electron beam, the magnetic field extending in a first direction, which crosses a traveling direction of the electron beam; and a rotary drive system configured to rotate the sealed X-ray tube, the anode having a surface including a first region and a second region arranged on one side and another side, with respect to a straight division line, the first region having a first metal arranged therein, and the second region having a second metal arranged therein, the second metal being different from the first metal, and by means of the rotary drive system rotating the sealed X-ray tube, the sealed X-ray tube being arranged with respect to the magnetic field generation portion so that the straight division line lies along the first direction.
Abstract:
Provided are an X-ray generator capable of easily measuring a beam size of an electron beam on an electron target, and an adjustment method therefor. The X-ray generator includes an electron target including a first metal, a second metal different from the first metal, and a third metal different from the second metal, which are sequentially arranged side by side along a first direction in a continuous manner.
Abstract:
An electron gun having: a cathode for emitting electrons; a first Wehnelt electrode equipped with a first aperture through which electrons are allowed to pass; and a second Wehnelt electrode that is equipped with a second aperture disposed at a predetermined position with respect to the cathode and the first aperture, and that is furnished at a position closer to the cathode than the first Wehnelt electrode, wherein: the cathode and the second Wehnelt electrode are included within a single assembly constituting a unitary body; and the assembly is detachably attached to the first Wehnelt electrode. Replacement of the cathode can be performed by detaching the cathode unit from the first Wehnelt electrode, and then ejecting the cathode unit out from the Wehnelt cover. The emitter of the cathode can thereby be reliably positioned with respect to the second aperture.