摘要:
Absorbent article including an absorbent core having multiple absorbent layers. The absorbent layers interact in a manner which desirably locates absorbed liquid in an appointed, high saturation wicking layer.
摘要:
A distinctive absorbent article includes an absorbent core having multiple absorbent layers, wherein the absorbent layers interact in such a manner which preferentially locates absorbed liquid in an appointed, high saturation wicking layer. The localization of the liquid within this wicking layer increases the potential of this layer to move liquid through capillary action due to the higher saturation level and increased amount of liquid available. The intake capability of the absorbent system is maintained or improved over current systems by keeping a second layer of the absorbent system at low saturation levels through as many insults of the product as possible, while providing optimum intake performance through appropriate control of the composite properties. The low saturation in this layer provides void volume for the incoming insult as well, as a high permeability, thus increasing the intake rate of the absorbent system as a whole, but the structure of the low saturation layer is also balanced to provide an appropriately high level of capillary tension to provide enough control of the liquid to stop leakage from occurring. This low saturation layer is used in addition to a surge material and provides intake functionality in addition to that provided by the surge material. In particular aspects of the invention, the body side layer of the absorbent core does not extend over the entire surface of the overall absorbent core, therefore is not used as the high saturation, wicking layer, but as the intake layer. This arrangement also allows the intake layer to be in direct contact with the incoming liquid, therefore allowing for more immediate access and improved intake function.
摘要:
A distinctive absorbent article includes an absorbent core having multiple absorbent layers, wherein the absorbent layers interact in such a manner which preferentially locates absorbed liquid in an appointed, high saturation wicking layer. The localization of the liquid within this wicking layer increases the potential of this layer to move liquid through capillary action due to the higher saturation level and increased amount of liquid available. The intake capability of the absorbent system is maintained or improved over current systems by keeping a second layer of the absorbent system at low saturation levels through as many insults of the product as possible, while providing optimum intake performance through appropriate control of the composite properties. The low saturation in this layer provides void volume for the incoming insult as well, as a high permeability, thus increasing the intake rate of the absorbent system as a whole, but the structure of the low saturation layer is also balanced to provide an appropriately high level of capillary tension to provide enough control of the liquid to stop leakage from occurring. This low saturation layer is used in addition to a surge material and provides intake functionality in addition to that provided by the surge material. In particular aspects of the invention, the body side layer of the absorbent core does not extend over the entire surface of the overall absorbent core, therefore is not used as the high saturation, wicking layer, but as the intake layer. This arrangement also allows the intake layer to be in direct contact with the incoming liquid, therefore allowing for more immediate access and improved intake function. In additional aspects, at least one primary layer region can have a non-uniform, selectively zoned basis weight distribution. Particular configurations of the at least one primary layer region can be constructed with a target area of such primary layer region having a basis weight which is less than a basis weight of another non-target portion of the primary layer region. Moreover, at least one primary layer region can have a heterogeneous structure. In particular constructions, the at least one primary layer region can include a plurality of two or more sublayers.
摘要:
There is provided an absorbent system for personal care products which may be transversely divided into about an equally sized center zone, two intermediate zones and two end zones where the ratio of the amount of liquid stored in the center zone to the amount of liquid stored in at least one of the end zones 30 minutes each of three insults of 80 ml according to a MIST Evaluation Test after less than 5:1. Such an absorbent system may be used in personal care products like diapers, training pants, feminine hygiene products, absorbent underpants, adult incontinence products, and the like.
摘要:
There is provided an absorbent system for personal care products which may be transversely divided into about an equally sized center zone, two intermediate zones and two end zones where the ratio of the amount of liquid stored in the center zone to the amount of liquid stored in at least one of the end zones 30 minutes after each of three insults of 80 ml according to a MIST Evaluation Test is less than 5:1. Such an absorbent system may be used in personal care products like diapers, training pants, feminine hygiene products, absorbent underpants, adult incontinence products, and the like.
摘要:
A multifunctional material is provided for use in personal care products. The multifunctional material has a permeability between 100 and 10000 Darcys and a capillary tension between about 2 and 15 cm. Structures containing this multifunctional material can have a runoff rate of less than 25 ml per 100 ml insult, over its life. The multifunctional material should have between about 30 and 75 weight percent of a slow rate superabsorbent, between 25 and 70 weight percent of pulp and from a positive amount up to about 10 percent of a binder component. The material preferably has a density between about 0.05 and 0.5 g/cc. The material has a liquid pass through function which desorbs a surge material across time frames consistent with user conditions and releases the liquid for distribution to remote storage locations. The material, when combined with the intake and distribution materials, defines a composite structure for use in personal care products.
摘要:
The present invention is directed to absorbent composites comprising superabsorbent materials. The superabsorbent material has: an Absorption Time of about 5+10 a2 minutes or greater, where a is the mean particle size of the superabsorbent material in millimeters; a capacity of about 15 g/g or greater; a Drop Penetration Value of about 2 seconds or less; and, a ½ Float Saturation of 50% or less. The present invention is further directed to fiber-containing fabrics and webs comprising superabsorbent materials and their applicability in disposable personal care products.
摘要:
An absorbent fibrous foam composite comprising a fluid intake capacity of at least 15 g/g, a vertical wicking distance of at least 10 cm, and an absorbency under zero load of at least 15 g/g. The absorbent fibrous foam composite comprising a water insoluble fibrous material and a superabsorbent material. The absorbent fibrous foam composite made by forming a slurry of water, a water-insoluble fiber, and a binding agent. A water-swellable, water-insoluble superabsorbent material is added to the slurry and the temperature is lowered until the water freezes. The frozen water is then removed by sublimation process and an absorbent fibrous foam recovered. The Gelation Time, which represents a fluid absorption rate of superabsorbent during the preparation, is critical to preparing uniform absorbent freeze-dried foams and can be adjusted by various mixing conditions and physical and chemical superabsorbent treatments.
摘要:
An absorbent article (10) includes a backsheet layer (30), a liquid permeable topsheet layer (28), and an absorbent body (32) sandwiched between the backsheet and topsheet layers. The absorbent body (32) includes a first fibrous stratum (52) having a first quantity of absorbent fibers, a second fibrous stratum (54) having a second quantity of absorbent fibers, and at least a third fibrous stratum (56) which is located between and integrally formed with the first and second fibrous strata (52, 54). In particular aspects, the third fibrous stratum (56) includes an operative quantity of a substantially hydrophilic, wet-strength agent. In other aspects, the wet-strength agent is distributed in the third quantity of absorbent fibers to render the third fibrous stratum (56) substantially non-dispersible.
摘要:
Absorbent structures that form superabsorbent polymers in situ. The structures include an absorbent material and a fibrous material containing an activating agent. The fibrous material releases the activating agent upon stimulation with an activator, which causes the polymer to become a superabsorbent polymer. The absorbent component is desirably a water-swellable, water-insoluble polymer. The absorbent structures form a superabsorbent composition in situ. Methods of making the activating agent containing fibrous material are provided.