摘要:
Metrology data associated with a plurality of workpieces processed at a selected operation in the process flow including a plurality of operations is retrieved. A processing context associated with each of the workpieces is determined. The processing context identifies at least one previous tool used to perform an operation on the associated workpiece prior to the selected operation. A plurality of performance metrics is determined for a plurality of tools capable of performing the selected operation based on the metrology data. Each performance metric is associated with a particular tool and a particular processing context. A set of the performance metrics is identified for the plurality of tools having a processing context matching a processing context of a selected workpiece awaiting performance of the selected operation. The selected workpiece is dispatched for processing in a selected one of the plurality of tools based on the set of performance metrics.
摘要:
Metrology data associated with a plurality of workpieces processed at a selected operation in the process flow including a plurality of operations is retrieved. A processing context associated with each of the workpieces is determined. The processing context identifies at least one previous tool used to perform an operation on the associated workpiece prior to the selected operation. A plurality of performance metrics is determined for a plurality of tools capable of performing the selected operation based on the metrology data. Each performance metric is associated with a particular tool and a particular processing context. A set of the performance metrics is identified for the plurality of tools having a processing context matching a processing context of a selected workpiece awaiting performance of the selected operation. The selected workpiece is dispatched for processing in a selected one of the plurality of tools based on the set of performance metrics.
摘要:
By defining a section-related WIP limit or a throughput-related WIP limit, an efficient “look ahead” characteristic may be established to efficiently control the WIP in a complex manufacturing environment, such as a semiconductor facility. The respective critical WIP values may enable efficient reduction of priority of products moving towards an increased WIP queue, thereby reducing or substantially avoiding the release of products that are expected to run into the WIP queue. In this way, the efficiency of shared tools may be increased, since process capacity no longer required for the processing products running into WIP queues may be allocated for other operations.
摘要:
By defining a section-related WIP limit or a throughput-related WIP limit, an efficient “look ahead” characteristic may be established to efficiently control the WIP in a complex manufacturing environment, such as a semiconductor facility. The respective critical WIP values may enable efficient reduction of priority of products moving towards an increased WIP queue, thereby reducing or substantially avoiding the release of products that are expected to run into the WIP queue. In this way, the efficiency of shared tools may be increased, since process capacity no longer required for the processing products running into WIP queues may be allocated for other operations.
摘要:
By simulating a manufacturing environment on the basis of appropriate simulation models, a schedule may be established in which process restrictions, tool availability and product entity status are automatically taken into consideration. Moreover, by estimating the process flow efficiency provided by a simulated time progression of the process flow in the environment, an optimized schedule may be established, which may be accomplished by identifying less efficient product entities and re-scheduling one or more product entities in order to obtain an enhanced process flow efficiency. The technique of the present invention may be advantageously applied to the processing of advanced mass products requiring sophisticated process tools and process sequences, such as the processing of semiconductor devices.
摘要:
By simulating a manufacturing environment on the basis of appropriate simulation models, a schedule may be established in which process restrictions, tool availability and product entity status are automatically taken into consideration. Moreover, by estimating the process flow efficiency provided by a simulated time progression of the process flow in the environment, an optimized schedule may be established, which may be accomplished by identifying less efficient product entities and re-scheduling one or more product entities in order to obtain an enhanced process flow efficiency. The technique of the present invention may be advantageously applied to the processing of advanced mass products requiring sophisticated process tools and process sequences, such as the processing of semiconductor devices.