摘要:
An electrolyte for use in electrochemical cells is provided. One type of non-aqueous Magnesium electrolyte comprises: at least one organic solvent; at least one electrolytically active, soluble, inorganic Magnesium salt complex represented by the formula: MgnZX3+(2*n), in which Z is selected from a group consisting of aluminum, boron, phosphorus, titanium, iron, and antimony; X is a halogen and n=1-5. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg+2 and total water content of
摘要:
A magnesium battery electrode assembly is described, including a current collector comprising a metal, an overlayer material on the metal and an electrode layer comprising an electrode active material disposed on the current collector. The overlayer material passivates the metal, or inhibits a corrosion reaction that would occur between the metal and an electrolyte in the absence of the overlayer material.
摘要:
A magnesium battery electrode assembly is described, including a current collector comprising a metal, an overlayer material on the metal and an electrode layer comprising an electrode active material disposed on the current collector. The overlayer material passivates the metal, or inhibits a corrosion reaction that would occur between the metal and an electrolyte in the absence of the overlayer material.
摘要:
Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.
摘要:
Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.
摘要:
Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.
摘要:
Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.
摘要:
Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.
摘要:
Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.
摘要:
Embodiments disclosed include photovoltaic power systems and methods for manufacturing the same. A photovoltaic power system can include a photovoltaic array, a DC to AC inverter, a positive conductor electrically connecting a positive inverter terminal of the DC to AC inverter to the positive array terminal and a negative conductor electrically connecting a negative inverter terminal of the DC to AC inverter to the negative array terminal, a positive-conductor ground electrically connected by a switch to the positive conductor, and a negative-conductor ground electrically connected by a switch to the negative conductor.