摘要:
A system and method of injecting a chemical into a high pressure process stream without pumps or other active components. The system utilizes the differential pressure created by resistive losses of downstream components within a high pressure process stream. A bypass side stream is taken from an upstream pressure location and returned to the downstream side of the resistive inline process component. The chemical solution vessel is pressurized by the higher side of the pressure differential. The solution then passes through a flow controlling capillary tube exiting on the lower pressure differential side into the bypass stream. The high flow rate chemically diluted bypass stream then returns to the process stream at the lower differential process stream tie-in. The chemical solution is isolated from the process water pressuring the vessel by a movable separating device preventing mixing of the two fluids. The vessel can also be pressurized by gas.
摘要:
A system and method of injecting a chemical into a high pressure process stream without pumps or other active components. The system utilizes the differential pressure created by resistive losses of downstream components within a high pressure process stream. A bypass side stream is taken from an upstream pressure location and returned to the downstream side of the resistive inline process component. The chemical solution vessel is pressurized by the higher side of the pressure differential. The solution then passes through a flow controlling capillary tube exiting on the lower pressure differential side into the bypass stream. The high flow rate chemically diluted bypass stream then returns to the process stream at the lower differential process stream tie-in. The chemical solution is isolated from the process water pressuring the vessel by a movable separating device preventing mixing of the two fluids. The vessel can also be pressurized by gas.
摘要:
Method for controlling the amount of metal atoms deposited into an oxide layer present on a metal surface, which metal atoms increase the corrosion resistance of metal when present in the oxide film, wherein the metal surface is submerged in water at a selected temperature within the range of about to 200° to 550° F.; and a solution of a compound containing the metal which increases the corrosion resistance of the metal surface when present in the oxide film is injected into the water. The compound decomposes at the selected temperature to release atoms of the metal which incorporate in the oxide film at a desired loading.
摘要:
Method for controlling the amount of metal atoms deposited into an oxide layer present on a metal surface, which metal atoms increase the corrosion resistance of metal when present in the oxide film, wherein the metal surface is submerged in water at a selected temperature within the range of about to 200° to 550° F.; and a solution of a compound containing the metal which increases the corrosion resistance of the metal surface when present in the oxide film is injected into the water. The compound decomposes at the selected temperature to release atoms of the metal which incorporate in the oxide film at a desired loading.
摘要:
A method for ensuring the distribution of noble metal in the reactor circuit during plant application without measuring the reactor water for noble metal content by chemical analysis. The method involves the measurement of electrochemical corrosion potential in an autoclave or a high-flow test section that is connected to the reactor water circuit through sample lines downstream of the injection port, preferably the point in the reactor circuit which is furthest from the injection port. If the noble metal flows into the autoclave or test section at these distant points in the reactor circuit, then the noble metal will deposit on the test specimens inside the autoclave or test section. After the noble metal has been injected for a predetermined duration, the electrochemical corrosion potential autoclave or test section is exposed to hydrogen water chemistry conditions and the electrochemical corrosion potentials of the specimens inside the autoclave or test section will be measured to determine the extent of their catalytic response. A good catalytic response indicates that the noble metal has reached the locations upstream where electrochemical corrosion potential is being measured.
摘要:
A method for mitigating crack growth on the surface of stainless steel or other metal components in a water-cooled nuclear reactor. A compound containing a noble metal, e.g., palladium, is injected into the water of the reactor in the form of a solution or suspension. This compound has the property that it decomposes under reactor thermal conditions to release ions/atoms of the noble metal which incorporate in or deposit on the interior surfaces of the crack. The compound may be organic, organometallic (e.g., palladium acetylacetonate) or inorganic in nature. The palladium deposited inside a crack should exhibit catalytic behavior even if the bulk surface palladium is depleted under high fluid flow conditions. As a result, the electrochemical potential inside the crack is decreased to a level below the critical potential to protect against intergranular stress corrosion cracking.
摘要:
A method for mitigating crack growth on the surface of stainless steel or other alloy components in a water-cooled nuclear reactor wherein a solution or suspension of a compound containing a noble metal is injected into the coolant water while the reactor is not generating nuclear heat, e.g., during shutdown or recirculation pump heatup. During shutdown, the reactor coolant water reaches temperatures as low as 120.degree. F., in contrast to the water temperature of 550.degree. F. during normal operation. During pump heatup, the water temperature reaches 400.degree.-450.degree. F. At these reduced temperatures, the rate of thermal decomposition of the injected noble metal compound is reduced. However, radiation-induced decomposition also occurs inside the reactor. In particular, the noble metal compound can be decomposed by the gamma radiation emanating from the nuclear fuel core of the reactor. The noble metal compound decomposes under reactor thermal and radiation conditions to release ions/atoms of the noble metal which incorporate in or deposit on the oxide film formed on the stainless steel and other alloy components. As a result, the electrochemical potential of the metal surface is maintained at a level below the critical potential in the presence of low levels of hydrogen to protect against intergranular stress corrosion cracking.
摘要:
A method for mitigating general corrosion and crack initiation and growth on the surface of a metal components in a water-cooled nuclear reactor. A compound containing a non-noble metal such as zirconium or titanium is injected into the water of the reactor in the form of a solution or suspension. This compound decomposes under reactor thermal conditions to release ions or atoms of the non-noble metal which incorporate in the surfaces of the components, including the interior surfaces of any cracks formed therein. The preferred compounds are zirconium compounds such as zirconium acetylacetonate, zirconium nitrate and zirconyl nitrate. Zirconium incorporated in the oxided surface of a metal component will reduce the electrochemical corrosion potential at the surface to a level below the critical potential to protect against intergranular stress corrosion cracking without the addition of hydrogen.
摘要:
A method for improving the performance and longevity of coatings of metal deposited from aqueous solutions of inorganic, organic or oraganometallic metal compounds. The method involves co-deposition of noble metal or corrosion-inhibiting non-noble metal during growth of oxide film on a component made of alloy, e.g., stainless steels and nickel-based alloys. The result is a metal-doped oxide film having a relatively longer life in the reactor operating environment. In particular, incorporation of palladium into the film provides greatly increased catalytic life as compared to palladium coatings which lie on the oxide surface.
摘要:
An injection system designed to deliver a chemical solution into a reactor through feedwater system taps during normal operating condition of a power reactor is disclosed. The process of delivery is via positive displacement pumps. Injection of chemical is in a concentrated solution form, which is internally diluted by the system prior to discharging from the skid. The injection system minimizes chemical loss due to deposition on the transit line, enables a higher concentrated solution to be used as the injectant, eliminates the time consuming laborious process of chemical dilution, raises chemical solution to the pressure required for injection, prevents solid precipitations out of solution at the injection pump head through the use of a flush solution, and deposits fresh chemical on new crack surfaces that develop during a power reactor start-up, shutdown and operation.