摘要:
A system and method of acquiring information from an image of a vehicle in real time wherein at least one imaging device with advanced light metering capabilities is placed aboard a vehicle, a computer processor means is provided to control the imaging device and the advanced light metering capabilities, the advanced light metering capabilities are used to capture an image of at least a portion of the vehicle, and image recognition algorithms are used to identify the current state or position of the corresponding portion of the vehicle.
摘要:
The present invention presents a flight training and synthetic visualization system, which comprises a fully mobile, self-contained data recording unit including a desktop graphics software engine for creating a virtual model of the flight capable of playing back the recorded trip, synchronized with a real-time video or imagery recording of the actual flight with a view from the cockpit of the aircraft as a pilot would actually view the flight, along with ambient audio of the cockpit. This allows for the user of the simulation to view both modeled data of the flight, as well as actual time-sequenced still images or video of the flight. The two sources of data are synched in time so that real video images of the aircraft as it is flying at a specific point in time is displayed in the simulation at the same moment as the rendered visualization of the flight.
摘要:
A system and method of acquiring information from an image of an instrument panel of a vehicle in real time wherein at least one imaging device with advanced light metering capabilities is placed aboard a vehicle, a computer processor means is provided to control the imaging device and the advanced light metering capabilities, the advanced light metering capabilities are used to capture an image of at least a portion of the instrument panel, such as a gauge or operator control, and image recognition algorithms are used to identify the current state of the imaged portion of the instrument panel.
摘要:
A system and method of acquiring information from an image of a vehicle in real time wherein at least one imaging device with advanced light metering capabilities is placed aboard a vehicle, a computer processor means is provided to control the imaging device and the advanced light metering capabilities, the advanced light metering capabilities are used to capture an image of at least a portion of the vehicle, and image recognition algorithms are used to identify the current state or position of the corresponding portion of the vehicle.
摘要:
A system and method of acquiring information from an image of a vehicle in real time wherein at least one imaging device with advanced light metering capabilities is placed aboard a unmanned aerial vehicle, a computer processor means is provided to control the imaging device and the advanced light metering capabilities, the advanced light metering capabilities are used to capture an image of at least a portion of the unmanned aerial vehicle, and image recognition algorithms are used to identify the current state or position of the corresponding portion of the unmanned aerial vehicle.
摘要:
A system and method of acquiring information from an image of a vehicle in real time wherein at least one imaging device with advanced light metering capabilities is placed aboard a vehicle, a computer processor means is provided to control the imaging device and the advanced light metering capabilities, the advanced light metering capabilities are used to capture an image of at least a portion of the vehicle, and image recognition algorithms are used to identify the current state or position of the corresponding portion of the vehicle.
摘要:
A system and method of acquiring information from an image of a vehicle in real time wherein at least one imaging device with advanced light metering capabilities is placed aboard a vehicle, a computer processor means is provided to control the imaging device and the advanced light metering capabilities, the advanced light metering capabilities are used to capture an image of at least a portion of the vehicle, and image recognition algorithms are used to identify the current state or position of the corresponding portion of the vehicle.
摘要:
The present invention presents a flight training and synthetic visualization system, which comprises a fully mobile, self-contained data recording unit including a desktop graphics software engine for creating a virtual model of the flight capable of playing back the recorded trip, synchronized with a real-time video or imagery recording of the actual flight with a view from the cockpit of the aircraft as a pilot would actually view the flight, along with ambient audio of the cockpit. This allows for the user of the simulation to view both modeled data of the flight, as well as actual time-sequenced still images or video of the flight. The two sources of data are synched in time so that real video images of the aircraft as it is flying at a specific point in time is displayed in the simulation at the same moment as the rendered visualization of the flight.
摘要:
A system and method of acquiring information from an image of an instrument panel of a vehicle in real time wherein at least one imaging device with advanced light metering capabilities is placed aboard a vehicle, a computer processor means is provided to control the imaging device and the advanced light metering capabilities, the advanced light metering capabilities are used to capture an image of at least a portion of the instrument panel, such as a gauge or operator control, and image recognition algorithms are used to identify the current state of the imaged portion of the instrument panel.
摘要:
A heading determination system comprises an inertial measurement unit (IMU) coupled with at least two GNSS receivers, each receiver paired with and receiving signals from a corresponding GNSS antenna, wherein the GNSS antennas are separated by an ultra-short baseline. The heading determination system receives signals broadcast by a plurality of GNSS satellites and calculates the phase difference in the signal seen among the separate GNSS antennas. Using this phase difference information, derived from comparing the signals received from a plurality of GNSS satellites, along with attitude data generated by the IMU, the heading determination system calculates a highly-accurate heading solution. A method is provided for determining a heading of a system including an IMU coupled with at least two GNSS receivers, with each receiver being paired with and receiving signals from a corresponding GNSS antenna and the antennas being separated by an ultra-short baseline.