摘要:
A low power analog absolute differencing circuit and architecture is disclosed. The circuit includes an integrating amplifier with an input node connected to a common integration line. The common integration line is connected to a set of analog comparison circuits to form an analog vector absolute differencing circuit row. Each of the analog comparison circuits compares a first analog signal to a second analog signal to produce an absolute difference signal. The absolute difference signal from each analog comparison circuit is transmitted in the form of charge drawn from the common integration line. The integrating amplifier provides an integration sum corresponding to the sum of the absolute difference signals. The analog absolute differencing architecture includes a set of analog vector absolute differencing circuit rows arranged to form an analog absolute difference computing array. The analog absolute difference computing array is loaded with a data block input array and a data frame input array. The data block input array inputs a first set of analog signals corresponding to a first set of data. The data frame input array inputs a second set of analog signals corresponding to a second set of data. The integrating amplifiers of the analog vector absolute differencing circuit rows of the analog absolute difference computing array constitute a distance integration array. A distance evaluation block takes as input the set of distances computed by the distance integration array and evaluates these distances to provide a single output, usually an address of a single row of the distance integration array.
摘要:
The present invention relates to an analog voltage-signal selector device of the type comprising at least one plurality of comparator circuits operating in parallel and each having at least a first and second input terminals and designed to receive respectively an analog voltage-comparison signal and analog voltage signals of predetermined value and at least one output terminal for digital voltage signals. This selector device also comprises at least one logic circuit having a plurality of input terminals each connected to a corresponding output terminal of the comparator circuits and at least one output terminal. Finally the selector incorporates at least one plurality of latches each having at least one input terminal connected to the output terminal of a corresponding comparator circuit and at least one drive terminal coupled to the output terminal of the logic circuit with each of the memory circuits having at least one output terminal corresponding to an output of the selector.
摘要:
A low power analog absolute differencing circuit includes an integrating amplifier with an input node connected to a common integration line. The common integration line is connected to a set of analog comparison circuits to form an analog vector absolute differencing circuit row. Each of the analog comparison circuits compares a first analog signal to a second analog signal to produce an absolute difference signal. The absolute difference signal from each analog comparison circuit is transmitted in the form of charge drawn from the common integration line. The integrating amplifier provides an integration sum corresponding to the sum of the absolute difference signals. The analog absolute differencing architecture includes a set of analog vector absolute differencing circuit rows arranged to form an analog absolute difference computing array. The analog absolute difference computing array is loaded with a data block input array and a data frame input array. The data block input array inputs a first set of analog signals corresponding to a first set of data. The data frame input array inputs a second set of analog signals corresponding to a second set of data. The integrating amplifiers of the analog vector absolute differencing circuit rows of the analog absolute difference computing array constitute a distance integration array. A distance evaluation block takes as input the set of distances computed by the distance integration array and evaluates these distances to provide a single output, usually an address of a single row of the distance integration array.
摘要:
A method, in a system for aiding the guidance of a vehicle, for identifying marking stripes of road lanes. A road image is subjected to a convolution operation with a mask matrix so as to identify discontinuities present in the image. The resulting convolved image is compared with a threshold value and a representation of the marking stripes is determined. The mask matrix is set in such a way as to eliminate at least partially the discontinuities which do not correspond to the marking stripes.
摘要:
An improved fingerprint sensing device is provided with multiple sensing apparatus, two or more of which operating on different sensing principles. For example, a capacitive sensor may be integrally formed with an optical sensor on a single substrate. Ideally, the multiple sensing apparatus are disposed such that they may sense nearly identical portions of a fingerprint simultaneously. A primary sensor may be employed to establish the identity of a user based on a fingerprint, while a secondary sensor may be employed to establish that the fingerprint is part of a live human (anti-spoofing). Integrated light sources may be provided to drive an optical sensor. The light sources may also provide visual cues for usage, and enhance the aesthetics of the device.
摘要:
An integrated leadframe and bezel structure includes a planar carrier frame, a plurality of bonding leads, a die pad region, and a bezel structure. The bezel structure includes a bending portion shaped and disposed to facilitate a portion of said bezel structure being bent out of the plane of said carrier frame. A sensor IC may be secured to the die pad region, and wire bonds made to permit external connection to the sensor IC. The bezel structure includes portions which are bent such that their upper extent is in or above a sensing surface. The assembly is encapsulated, exposing on the top surface part of the bezel portions and the upper surface of the sensor IC, and on the bottom surface the contact pads. Two or more bezel portions may be provided, one or more on each side of the sensor IC.
摘要:
A planar fingerprint pattern detecting array includes a large number of individual skin-distance sensing cells that are arranged in a row/column configuration. Each sensing cell includes an amplifier having an ungrounded input mode and an ungrounded output node. Output-to-input negative feedback that is sensitive to the fingerprint pattern is provided for each amplifier by way of (1) a first capacitor plate that is placed vertically under the upper surface of a dielectric layer and is connected to the ungrounded amplifier input node, (2) a second capacitor plate that is placed vertically under the upper surface of the dielectric layer in close horizontal spatial relation to the first capacitor plate and is connected to the ungrounded output node, and (3) an ungrounded fingertip whose fingerprint pattern is to be detected, which ungrounded fingertip is placed on the upper surface of the dielectric layer in close vertical spatial relation with the first and second capacitor plates. Electrostatic discharge protection relative to electrostatic potential that may be carried by the ungrounded fingertip is provided by placing a number of grounded metal paths within the dielectric layer to spatially surround each of the first and second capacitor plates, this being done in a manner that does not disturb the ungrounded state of the fingertip.
摘要:
A planar fingerprint pattern detecting array includes a large number of individual skin-distance sensing cells that are arranged in a row/column configuration. Each sensing cell includes an amplifier having an ungrounded input node and an ungrounded output node. Output-to-input negative feedback that is sensitive to the fingerprint pattern is provided for each amplifier by way of (1) a first capacitor plate that is placed vertically under the upper surface of a dielectric layer and is connected to the ungrounded amplifier input node, (2) a second capacitor plate that is placed vertically under the upper surface of the dielectric layer in close horizontal spatial relation to the first capacitor plate and is connected to the ungrounded output node, and (3) an ungrounded fingertip whose fingerprint pattern is to be detected, which ungrounded fingertip is placed on the upper surface of the dielectric layer in close vertical spatial relation with the first and second capacitor plates. Electrostatic discharge protection relative to electrostatic potential that may be carried by the ungrounded fingertip is provided by placing a number of grounded metal paths within the dielectric layer to spatially surround each of the first and second capacitor plates, this being done in a manner that does not disturb the ungrounded state of the fingertip.
摘要:
A neural network including a number of synaptic weighting elements, and a neuron stage; each of the synaptic weighting elements having a respective synaptic input connection supplied with a respective input signal; and the neuron stage having inputs connected to the synaptic weighting elements, and being connected to an output of the neural network supplying a digital output signal. The accumulated weighted inputs are represented as conductances, and a conductance-mode neuron is used to apply nonlinearity and produce an output. The synaptic weighting elements are formed by memory cells programmable to different threshold voltage levels, so that each presents a respective programmable conductance; and the neuron stage provides for measuring conductance on the basis of the current through the memory cells, and for generating a binary output signal on the basis of the total conductance of the synaptic elements.
摘要:
A distance sensor has a capacitive element in turn having a first capacitor plate which is positioned facing a second capacitor plate whose distance is to be measured. In the case of fingerprinting, the second capacitor plate is defined directly by the skin surface of the finger being printed. The sensor comprises an inverting amplifier, between the input and output of which the capacitive element is connected to form a negative feedback branch. By supplying an electric charge step to the input of the inverting amplifier, a voltage step directly proportional to the distance being measured is obtained at the output.