Abstract:
A protective container for holding a reusable control part of a transcutaneous sensor system for detecting at least one analyte in a bodily fluid is disclosed. The control part includes at least one coupling, which has at least one sensor coupling for connection to at least one transcutaneous sensor. The protective container has at least one container housing. The control part can be held in the container housing. The container housing is adapted to shield the control part from environmental influences. The container housing also has at least one connector which can be connected to the coupling and seals the latter in a media-tight fashion.
Abstract:
A protective container for holding a reusable control part of a transcutaneous sensor system for detecting at least one analyte in a bodily fluid is disclosed. The control part includes at least one coupling, which has at least one sensor coupling for connection to at least one transcutaneous sensor. The protective container has at least one container housing. The control part can be held in the container housing. The container housing is adapted to shield the control part from environmental influences. The container housing also has at least one connector which can be connected to the coupling and seals the latter in a media-tight fashion.
Abstract:
A diabetes management system having a reliable data management scheme is disclosed. The system comprises a plurality of devices, each device performing a different function relating to treatment of diabetes. Each device has a device identifier and each device generates data records relating to the function of the device. Each device includes a metadata generator configured to generate a metadata tag for a data record generated by the device. A metadata tag includes the device identifier of the corresponding device, a record identifier, and a source identifier indicating whether the record was originated by a human or the device. The system further includes a diabetes management device in communication with the plurality of devices and configured to manage records received from the plurality of devices. When a first device of the plurality of devices generates a new record to be communicated to the diabetes management device, the metadata generator of the first device generates a new unique record identifier and a new metadata tag based on the new unique record identifier and the device identifier of the first device, and the first device propagates the new record and the new metadata tag to the second device.