Abstract:
A vehicle seat assembly includes a seat back supported with respect to a seat bottom and is attached to the vehicle by a mounting assembly. The mounting assembly has an inboard track assembly and an outboard track assembly that are both mounted to a vehicle structure with the track assemblies being spaced apart from one another. Each track assembly includes a first track and a second track supported for movement relative to the first track. The first and second tracks are preferably mounted in a vertical configuration. The seat bottom is supported on the second track for horizontal movement with the second track as seat position is adjusted. A single drive mechanism is supported on one of the inboard or outboard track assemblies. The drive mechanism includes a single drive member that is mounted between the inboard and outboard track assemblies. A truss structure extends between the inboard and outboard track assemblies to provide structural support for the seat assembly as seat position is adjusted.
Abstract:
A vehicle seat assembly includes a seat back supported with respect to a seat bottom and is attached to the vehicle by a mounting assembly. The mounting assembly has an inboard track assembly and an outboard track assembly that are both mounted to a vehicle structure with the track assemblies being spaced apart from one another. Each track assembly includes a first track and a second track supported for movement relative to the first track. The seat bottom is supported on the second track for horizontal movement with the second track as seat position is adjusted. A single locking mechanism is supported on one of the inboard or outboard track assemblies. The locking mechanism moveable between a locked position where the locking mechanism maintains the second track in a selected position relative to the first track and an unlocked position where the second track is moves with respect to the first track to a desired seat position. The mounting assembly further includes a manual actuator for selectively moving the locking mechanism between the locked and unlocked positions. A truss structure extends between the inboard and outboard track assemblies to provide structural support for the seat assembly.
Abstract:
A vehicle seat assembly includes a seat bottom and a seat back supported for movement relative to the seat bottom such that seat position can be adjusted forwardly or rearwardly with respect to the vehicle. The seat assembly is mounted to a vehicle structure and includes a first track and a second track supported for movement relative to the first track with the seat bottom being supported on the second track for movement with the second track. An actuator selectively controls the movement of the second track with respect to the first track. The assembly also includes at least one torque tube for providing vertical seat adjustment. The torque tube presents a bearing surface for rotatably supporting a bearing surface located on the second track.
Abstract:
A power seat positioning device for automatically adjusting the horizontal fore and aft position of a seat within a vehicle using a single electric motor. A lower track assembly is attached to a vehicle floor and includes a first and second laterally spaced lower track members. An associated upper track assembly attaches to a vehicle seat and includes a first and second upper track member which slide within the first and second lower track members respectively to adjust the for and aft position of the seat within the vehicle. A drive motor and gearbox arrangement is supported on the first upper track to provide the motive force which drives only the first upper track relative to the first lower seat track. A brace member directly connects the first upper track to the second upper track to coordinate the horizontal position of the first upper seat track with the position of the second upper seat track.
Abstract:
A support structure for a vehicle seat assembly which allows the seat position to be adjusted forwardly or rearwardly with respect to the vehicle. The seat support structure is mounted to a vehicle structure and includes a first track, a second track, a torque tube and a brace member supported for movement relative to the first track with the seat bottom being supported on the second track for movement relative to the first track. A restraint bracket which is attached to the seat belt is adjacent the torque tube and second track without the necessity of fasteners. The restraint bracket mounting allows a force to be transfered to the associated torque tube, first track, and second track. The present invention further provides a method of seat assembly in which the torque tube is maintained under compression and the brace member under tension to provide a rigid, integral seat support structure.
Abstract:
A system for controlling multiple vehicle includes a twelve volt (12V)/forty-two volt (42V) battery power distribution system that provides direct current. The system converts single phase alternating current to multiple phase alternating current to simultaneously power multiple vehicle systems. A single pulse width modulation generator converts the direct current from the 12V/42V battery power distribution system to alternating current. This provides one power supply path of alternating current, which has a first phase. A splitter device splits the one power supply path of alternating current into three power paths. A lead/lag circuit is used to shift the alternating current of the second path to a second phase different than the first phase of the first power supply path. A second lead/lag circuit for shifts the alternating current of the third path to a third phase different than the first phase or the second phase. This creates a three-phase alternating current power from a single direct current source. The three-phase alternating current is used to power a plurality of induction motors that operate multiple vehicle systems.
Abstract:
A vehicle seat assembly includes a seat back that is supported with respect to a seat bottom. The seat bottom is supported on a track assembly that includes a seat adjuster for controlling movement of the seat back and bottom. The seat adjuster can move the seat in horizontal and/or vertical directions and can also be used to adjust the tilt of the seat. An electric motor is used to drive the seat adjuster. The motor supports a first connector and the seat adjuster supports a second connector. A flexible shaft is used to interconnect the first and second connectors to transmit power from the motor to the adjuster. The shaft has a first end and a second end with each of the ends defined by a helical body portion. The first connector and the first end are mated to interconnect the motor and the shaft and the second connector and the second end are mated to interconnect the seat adjuster and the shaft. The helical body portion of the first and second ends is twisted with respect to the first and second connectors such that there is a slight interference fit between the ends and the connectors. The use of the helical body to create the interference fit allows for easy assembly of the shaft to the motor and seat adjuster and is quiet in operation.
Abstract:
A system for controlling a displacement drive of a motor vehicle includes a manually operable actuator movable over a fixed stroke between a first end position and a second end position. The actuator is biased to a neutral position centrally located between the first and second end positions and provides a signal representative of position of the actuator. A controller receives the signal from the actuator and produces commands for a reversible DC electric motor of the displacement drive device. The commands vary speed of the drive motor based on the position of the actuator such that the speed of the drive motor is zero at the neutral position, increases in one direction as the actuator moves toward the first end position, and increases in the other direction as the actuator moves toward the second end position.
Abstract:
A plurality of motors for use in driving accessories on a vehicle, are each powered by three-phase current. A single controller controls the supply three-phase current to the plurality of motors. In another aspect of the invention, pseudothree-phase current is created from a direct current voltage source. A chopping circuit chops the voltage into a plurality of pulses, and a phase shift circuit then creates phase-shifted power signals from those pulses. The present invention thus enables the use of three-phase alternating current motors on a vehicle to drive accessories. This reduces the cost and size of the required motors.
Abstract:
A seat track assembly for an adjustable seat with positive engagement is disclosed and has a lower track assembly with at least one lower track having a plurality of spaced slots and an upper track assembly with at least one lower track. The upper track is slidable over the lower track. A latch is movable from a latching position securing the upper track with respect to the lower track to an unlatching position where the upper track is free to slide over the lower track. The latch comprises a plurality of locking pawls mounted on the upper track, with each locking pawl having a first tooth and a second tooth and each tooth has a front face and a rear face. In the latching position the first tooth of a first one of the locking pawls is received within a first slot and the second tooth of the first one of the locking pawls is received within a second slot. In accordance with certain preferred embodiments the width of each slot is twice the slot width, the pawls are separated from one another by a distance equivalent to the width of each tooth, the slots are separated by a distance generally equal to the width of each tooth.