摘要:
A system for providing multiple graphical representations for wireless network devices indicating status of the devices. The generated graphical representations of the devices are indicative of radio frequency channels the devices are operating on, as well as whether devices are on, off or in a standby mode. A device in standby mode monitors the wireless network to determine when it can resume normal operation. A menu or other interface construct is generated to enable a user to determine additional properties of the devices, such as addresses. Device representations may also indicate that devices are operating within the wireless network, but do not support one or more functions associated the system for managing the wireless network.
摘要:
A previously unknown wireless device, which may be either an access point or a station, is detected by receipt of transmissions from that device at one or more access points that are currently operating within a managed wireless network. A graphic representation of the newly detected device is displayed in a region of a user interface external to a region containing a representation of the physical environment of the managed wireless network. A user selects a number of known access points from which an estimated distance to the newly detected device is to be determined and represented. A representation is generated of an estimated distance from each one of the selected number of access points, such as those access points that are estimated to be physically closest to the newly detected device, for example on the basis of signal strength with regard to transmissions from the newly detected device received at the known access points. The distance representations from the known access points may be provided using substantially circular “distance rings”, displayed in the region of the user interface containing a representation of the physical environment in which the wireless network is deployed. The distance rings enable a user to may observe one or more distance ring intersections indicating one or more potential positions within the wireless network's physical environment at which the newly detected device may be located.
摘要:
A previously unknown wireless device, which may be either an access point or a station, is detected by receipt of transmissions from that device at one or more access points that are currently operating within a managed wireless network. A graphic representation of the newly detected device is displayed in a region of a user interface external to a region containing a representation of the physical environment of the managed wireless network. A user selects a number of known access points from which an estimated distance to the newly detected device is to be determined and represented. A representation is generated of an estimated distance from each one of the selected number of access points, such as those access points that are estimated to be physically closest to the newly detected device, for example on the asis of signal strength with regard to transmissions from the newly detected device received at the known access points. The distance representations from the known access points may be provided using substantially circular “distance rings”, displayed in the region of the user interface containing a representation of the physical environment in which the wireless network is deployed. The distance rings enable a user to may observe one or more distance ring intersections indicating one or more potential positions within the wireless network's physical environment at which the newly detected device may be located.
摘要:
A client device detects when it roams between subnets and signals to a device in the subnet being entered. The client may detect roaming by monitoring subnet identifiers included in beacon signals transmitted by access points. When the client detects a beacon with a new subnet identifier and at the same time no longer detects a beacon with the original subnet identifier then roaming is indicated. When roaming is indicated the client responds by setting a tag, such as an IEEE 802.1q VLAN tag, in packets transmitted by the client. The tagged packets provide an indication to devices in the new subnet that the client has roamed into that new subnet. Devices in the new subnet, such as access points and switches, recognize the tagged packets and establish a path to the original subnet in response. For example, the tagged packets transmitted by the client may be encapsulated pursuant to a Layer 3 protocol and tunneled from a switch associated with the subnet being entered to a switch in the original subnet. If the client roams to other subnets the path is established from the new subnet to the original subnet, rather than an intermediate subnet.
摘要:
An identity verification system enables the identity of an individual to be verified to others using the internet. An initial identification ceremony is recorded in which the user performs instructions that cannot be known in advance, such as reading text that cannot be anticipated. The initial ceremony can be replayed and authenticated by individuals who already personally know the user. Alternatively, the identity of the user in the initial ceremony can be authenticated using other existing techniques such as KBA. A secondary instruction ceremony is subsequently performed when identity verification is required in order to authorize a directive or transaction. In the secondary instruction ceremony the user performs unforeseeable instructions such as reading text that cannot be anticipated and reading aloud an indication of the transaction. The combination of (a) a visual check that the two samples were recorded by the same person and (b) in the second sample the user performs the requested instruction text gives a high degree of confidence that the person authorized the indicated directive or transaction.
摘要:
The performance and ease of management of wireless communications environments is improved by a mechanism that enables access points (APs) to perform automatic channel selection. A wireless network can therefore include multiple APs, each of which will automatically choose a channel such that channel usage is optimized. Furthermore, APs can perform automatic power adjustment so that multiple APs can operate on the same channel while minimizing interference with each other. Wireless stations are load balanced across APs so that user bandwidth is optimized. A movement detection scheme provides seamless roaming of stations between APs.
摘要:
The performance and ease of management of wireless communications environments is improved by a mechanism that enables access points (APs) to perform automatic channel selection. A wireless network can therefore include multiple APs, each of which will automatically choose a channel such that channel usage is optimized. Furthermore, APs can perform automatic power adjustment so that multiple APs can operate on the same channel while minimizing interference with each other. Wireless stations are load balanced across APs so that user bandwidth is optimized. A movement detection scheme provides seamless roaming of stations between APs.
摘要:
The performance and ease of management of wireless communications environments is improved by a mechanism that enables access points (APs) to perform automatic channel selection. A wireless network can therefore include multiple APs, each of which will automatically choose a channel such that channel usage is optimized. Furthermore, APs can perform automatic power adjustment so that multiple APs can operate on the same channel while minimizing interference with each other. Wireless stations are load balanced across APs so that user bandwidth is optimized. A movement detection scheme provides seamless roaming of stations between APs.
摘要:
The performance and ease of management of wireless communications environments is improved by a mechanism that enables access points (APs) to perform automatic channel selection. A wireless network can therefore include multiple APs, each of which will automatically choose a channel such that channel usage is optimized. Furthermore, APs can perform automatic power adjustment so that multiple APs can operate on the same channel while minimizing interference with each other. Wireless stations are load balanced across APs so that user bandwidth is optimized. A movement detection scheme provides seamless roaming of stations between APs.
摘要:
The performance and ease of management of wireless communications environments is improved by a mechanism that enables access points (APs) to perform automatic channel selection. A wireless network can therefore include multiple APs, each of which will automatically choose a channel such that channel usage is optimized. Furthermore, APs can perform automatic power adjustment so that multiple APs can operate on the same channel while minimizing interference with each other. Wireless stations are load balanced across APs so that user bandwidth is optimized. A movement detection scheme provides seamless roaming of stations between APs.