摘要:
A transfer coping configured to take an impression of an implant is disclosed. The transfer coping has an impression material contact portion and an implant mating portion. The implant mating portion has at least one support portion and at least one deflection portion configured to be received within an opening on a coronal portion of an implant. The at least one protrusion is disposed on the at least one deflection portion and is configured to engage in a snap-fit manner with a coordinating feature of an implant. A method for identifying the position of an implant in a patient is also disclosed.
摘要:
A temporary restoration or preform for use in a patient's body may comprise apical end, a coronal end opposite the apical end, and a portion configured to engage with an underlying structure for retention thereto, wherein a first portion of the preform comprises a hardened material and a remaining portion of the preform comprises a hardenable malleable material. Methods for fitting a temporary restoration in a patient and kits for making dental restorations are also disclosed.
摘要:
A transfer coping configured to take an impression of an implant is disclosed. The transfer coping has an impression material contact portion and an implant mating portion configured to be received within an opening on a coronal portion of the implant. The implant mating portion has at least one support portion and at least one deflection portion. The at least one support portion and the at least one deflection portion are separated from one another by grooves disposed therebetween. The at least one protrusion is disposed on the at least one deflection portion and is configured to engage in a snap-fit manner with a coordinating feature of an implant to maintain engagement of the transfer coping with the implant to take an impression. A method for taking an impression of an implant is also disclosed.
摘要:
A transfer coping configured to take an impression of an implant is disclosed. The transfer coping has an impression material contact portion and an implant mating portion. The implant mating portion has at least one support portion and at least one deflection portion configured to be received within an opening on a coronal portion of an implant. The at least one protrusion is disposed on the at least one deflection portion and is configured to engage in a snap-fit manner with a coordinating feature of an implant. A method for identifying the position of an implant in a patient is also disclosed.
摘要:
A transfer coping configured to take an impression of an implant is disclosed. The transfer coping has an impression material contact portion and an implant mating portion. The implant mating portion has at least one support portion and at least one deflection portion configured to be received within an opening on a coronal portion of an implant. The at least one protrusion is disposed on the at least one deflection portion and is configured to engage in a snap-fit manner with a coordinating feature of an implant. A method for identifying the position of an implant in a patient is also disclosed.
摘要:
A system for taking an impression of an implant implanted in a patient's body may comprise an abutment comprising an implant engaging portion and a component supporting portion. The implant engaging portion may be configured to engage with an implant configured to be implanted in a patient's body and the component support portion may comprise at least one retention groove. The system may further comprise an impression coping configured to receive the component supporting portion and comprising at least one protrusion feature configured for snap-fit engagement with the at least one retention groove, wherein the impression coping is made from a material comprising metal.
摘要:
A fluid having magnetorheological (MR) properties and including a finely-divided abrasive material is directed through a non-ferromagnetic nozzle disposed axially of the helical windings of an electric solenoid. The MR fluid may contain magnetosoft or magnetosolid particles or mixtures thereof. A magnetic field created by the solenoid orients and aligns the magnetic moments of the particles to form fibrils thereby stiffening the flowing MR fluid which, when ejected from the nozzle, defines a highly-collimated jet. Collimation of the MR material persists for a significant time outside the magnetic field, permitting use of the abrasive jet to shape and/or polish the surface of a workpiece at some distance from the nozzle. The jet is directed into a shroud against a workpiece mounted for multiple-axis rotation and displacement to meet predetermined material removal needs for shaping. The solenoid may be similarly mounted to also move the jet over the surface of the workpiece. The apparatus may be provided with a plurality of independently-powerable electromagnets disposed in a plane orthogonal to the jet for deflecting the jet as desired to a specific target area on the workpiece or to move over the surface of the workpiece in a complex, predetermined pattern. The shapes and locations of anomalies to be removed may be pre-programmed into a computer-operated controller which calculates and controls the intensity and dwell time of the jet as it traverses repeatedly over the workpiece to achieve the desired result.
摘要:
An improved system for increasing the effectiveness of magnetorheological finishing of a substrate. An inline flowmeter is close-loop linked to the rotational speed of a pressurizing pump to assure that the flow of magnetorheological fluid (MRF) to the work zone is constant. A simplified capillary viscometer is disposed in the fluid delivery system at the exit thereof onto the wheel surface. Output signals from the flowmeter and the viscometer pressure sensor are sent to a computer which calculates the viscosity of MRF being delivered to the work zone and causes replenishment of carrier fluid to the work-concentrated MRF to return the viscosity to aim to assure that a constant concentration of magnetic solids is being provided to the work zone. Asymmetric pole pieces for the field magnet at the work zone extend the magnetic field along the wheel surface upstream of the work zone to permit full magnetic stiffening of the MRF before it engages the work piece, while minimizing fringing field in the vicinity of the viscometer, and to shorten the magnetic field along the wheel surface downstream of the work zone.
摘要:
A magnetic wiper for removing magnetorheological fluid from a carrier surface includes a horseshoe magnet having north and south polepieces elongated in a first direction orthogonal to a second direction of magnetic flux in the magnet. The polepieces are generally parallel at their free ends in the first direction and are preferably arcuate such that the inner polepiece forms a trough for receiving magnetorheological fluid removed from the carrier surface and conveying it to an exit tube. The free ends are shaped to conform closely to the shape of the carrier surface, forming a narrow gap therebetween containing a magnetic fringing field extending beyond the free ends. Magnetorheological fluid conveyed into the gap by the carrier surface is magnetically stiffened to a very stiff paste which is retained in the gap by the fringing field, forming a dynamic liquid seal such that additional magnetorheological fluid carried by the carrier surface is wiped away from the surface and into the trough formed by the inner polepiece. Thus, the magnet forms an effective remover of magnetorheological fluid from the carrier surface without any mechanical contact with the surface.
摘要:
A magnetorheological fluid delivery system includes a mixing and tempering vessel. Fluid is admitted to the vessel via a plurality of tangential ports, creating a mixing of the fluid in the vessel and promoting homogeneity. Fluid may be reconstituted in the vessel by metered addition of carrier fluid. A fixed-speed centrifugal pump disposed in the vessel pressurizes the system. Fluid is pumped through a magnetic-induction flowmeter and a magnetic flow control valve having solenoid windings whereby MR fluid is magnetically stiffened to restrict flow. A closed-loop feedback control system connects the output of the flowmeter to performance of the valve. A nozzle having a slot-shaped bore dispenses MR fluid for re-use in the work zone. A planar-diaphragm flush-mounted pressure transducer at the entrance to the nozzle and flowmeter inferentially measure relaxed viscosity and provide signals to a computer for dispensing metered amounts of carrier fluid into the mixing vessel to assure correct composition of the reconstituted fluid as it is dispensed.