Abstract:
A fluidic oscillator capable of generating free fluid jets having distinctive, controllable and industrially/commercially useful flow patterns has a switching chamber having an inlet port that allows a pressurized fluid to enter and flow through the oscillator, an exhaust passage having a sidewall that forms one boundary wall of the switching chamber, a container passage having a sidewall that forms the second boundary wall of the switching chamber, a compliance member connected to the distal end of the container passage, and an expansion chamber connected to the distal end of the exhaust passage, with the expansion chamber having an exhaust orifice that allows fluid to flow from the oscillator. In operation, such an oscillator yields a contained fluid jet that issues from the inlet port into the swishing chamber and alternately switches its flow direction between the container and exhaust passages. This switching action serves to generate controllable pressure waves in the exhaust passage and expansion chamber which act to control the pattern of the free fluid jet that flows from the orifice.
Abstract:
A fluidic oscillator which is free of feedback passages has an oscillation chamber having a length greater than its width, a pair of mutually facing and complementarily-shaped sidewalls and planar top and bottom walls, and first and second end walls. An input power nozzle is formed in said first end wall having a width W and a depth D, for issuing a stream of fluid into the oscillation chamber, and form alternately pulsating, cavitation-free vortices in said oscillation chamber on each side of the stream. An outlet opening formed in the downstream end wall and axially aligned with the power nozzle and has a width and depth such that internal pressure in the oscillation chamber is greater than ambient. The outlet wall is hingedly connected to a chamber wall and the chamber is such that it can be molded with the outlet wall hingedly connected thereto in one molding.
Abstract:
A fluidic oscillator which is free of feedback passages has an oscillation chamber having a length greater than its width, a pair of mutually facing and complimentary-shaped sidewalls and planar top and bottom walls, and first and second end walls. Stabilization ribs are formed on at least one of the top and bottom walls. An input power nozzle is formed in said first end wall having a width W and a depth D, for issuing a stream of fluid into the oscillation chamber, and form alternately pulsating, cavitation-free vortices in said oscillation chamber on each side of the stream. An outlet opening formed in the downstream end wall and axially aligned with the power nozzle and has a width and depth such that internal pressure in the oscillation chamber is greater than ambient. The outlet wall is hingedly connected to a chamber wall and the chamber is such that it can be molded with the outlet wall hingedly connected thereto in one molding.
Abstract:
Air is detected from opposing ends of a trough-like continuous contour which defines a guide path for the two opposing streams. The air streams will be attached to flow along the trough and where the oppositely directed streams impact or impinge upon each other, they will be deflected normal to their path and the two combined streams will be projected or directed perpendicularly outwardly from the trough in the form of a fan-shaped jet. By controlling the velocity of the two opposing jets, the point of impact or impingement of the two jets can be moved along the trough with the trough defining the path of movement of the point or virtual outlet of outward projection of the combined jets. In preferred embodiments, the defrost and heating and air conditioning outlets for automobiles incorporate the invention so as to avoid protrusions and provide a continuous clean and unbroken appearance.
Abstract:
There is disclosed an oscillating reed particularly for use in generating a sweeping or oscillating air flow pattern which is rendered clickless by limiting directions of bending of the reed element to an axis transverse to the direction of air flow. This significantly silences the oscillations and, in conjunction with polishing of the edges of the reed and rounding the corners of the mounting bar in which the downstream end of the reed is secured, cracking and breakage of the reed element has been substantially eliminated thereby lengthening significantly the life of the oscillating element.
Abstract:
A dual pattern nozzle comprises a fluid oscillator of the type which utilizes an obstacle or island in the path of liquid flow to produce a vortex street downstream of the island. A flow splitter is disposed downstream of and sufficiently close to the island to prevent the flow around the island from re-combining before reaching the flow divider, whereupon liquid vortices are alternately issued from each side of the divider. The spinning liquid breaks up into two patterns of droplets, the patterns being directed at respective spaced areas.
Abstract:
An improved spray head that is more effective and efficient at providing a wider range of desired spray distributions includes the following elements: (a) a plurality of fluidic oscillators, each oscillator having a fluidic circuit embedded in its top surface, with this circuit forming a path in which a fluid may flow through the oscillator, wherein these oscillators are stacked one on top of the other, with the sides of the oscillators being configured so that they stack such that the flow of fluid from adjoining oscillators in the stack have an angle of divergence between the centerlines of the planes defined by the flows from the outlets of the adjoining oscillators that is in the range of 2–5 degrees, (b) a plurality of cover plates, with each cover plate being proximate the top surface of one of the fluidic oscillators and attached to the oscillator so as to provide a seal against the flow of fluid from the oscillator's fluidic circuit, (c) a carrier assembly having a front and a rear surface and a cavity extending between these surfaces, with this cavity being configured so to receive and hold the stack of fluidic oscillators in the spray head, and (d) a stopper unit that attaches to the assembly's rear surface and seals it against leakage from the assembly's rear surface.
Abstract:
A leak detection system and method for fluid operated device includes a backloaded fluidic oscillator having an interaction chamber, a power nozzle at its upstream end coupled to a source of fluid under pressure and an exit throat at its downstream end. The interaction chamber first diverges from the power nozzle and then converges towards the exit throat. A pair of outlet passages are connected to the exit throat; one of the outlet passages is connected to the fluid operated device and the other of the outlet passages is connected to a fixed volume and a vent whereby the backloaded fluidic oscillator oscillates at a rate which is a function of the leakage of the fluid operated device.
Abstract:
A fluidic flow meter comprising a fluidic oscillator having an oscillation chamber, a power nozzle for issuing a jet of fluid into the oscillation chamber, an outlet for issuing fluid from the oscillation chamber. A bendable fiber optic wave guide loop has a section adapted to lose light as a result of flexing or bending is mounted in a flow path in the oscillation chamber and subjected to oscillatory flow of the fluid. Light is injected into one end of the fiber optic wave guide and a detector senses the oscillatory loss of light in the fiber optic wave guide as a measure of fluid flow through the fluidic oscillator.
Abstract:
A vehicle windshield defrost system utilizes a fluidic oscillator for sweeping a jet of heated air across the windshield. The fluidic oscillator is of the type having an interaction chamber with sidewalls which converge to a common outlet to form a cross over type output region and thereby reduce the amount of space on the dashboard normally occupied by an output funnel.