摘要:
A control system comprising a driver circuit for magnetic systems is provided. The driver circuit is coupled to a magnetic system and is configured for isolating control signals from electromagnetic interference. The control signals are configured for controlling a plurality of switching elements in the magnetic system. The driver circuit and the magnetic system are located in shielded environment.
摘要:
An incubator arrangement and radiofrequency (RF) coil are provided for use in a Magnetic Resonance Imaging (MRI) system. The incubator arrangement comprises an enclosure adapted to support a subject in a magnet of the MRI system during imaging and a radiofrequency coil disposed within the enclosure. The RF coil is adapted to provide visual and physical access to the subject, and further adapted to obtain a selected signal to noise ratio.
摘要:
A combined acoustic backing and interconnect module for connecting an array of ultrasonic transducer elements to a multiplicity of conductors of a cable utilizes the backing layer volume to extend a high density of interconnections perpendicular to the transducer array surface. The module is made by injecting flowable backfill material into a mold made up of a plurality of spacer plates having aligned channels, with interleaved flexible circuit boards. The backfill material is cured to form a backing layer which supports the flexible circuit boards in mutually parallel relationship. Excess flexible circuit material on one side of the backing layer is cut flush with the front face of the backing layer, leaving exposed ends of the conductive traces on the flexible circuit boards. The module is then laminated to a piezoelectric ceramic layer, and diced. The flexible circuit board conductive traces are aligned with, and electrically connected to, signal electrodes of the transducer elements. The other ends of the conductive traces on a fanout portion of the flexible circuit board are connected to the cable.
摘要:
The axis of rotational transducer array scans, because of imperfect transducer array assembly, may have two orthogonal offsets relative to the geometric center of the transducer array. Without knowledge of these offsets, it is not possible to convert rotational transducer scan data into a rectilinear (Euclidean) coordinate system, as is necessary for three-dimensional processing. Using spatial coherency between appropriate scan lines in different rotational transducer scans, the horizontal and vertical rotational offsets are calculated. These offsets are then utilized in converting the data to a rectilinear coordinate system for three-dimensional processing.