摘要:
A method for repairing a shrink-fitted turbine disc without removing the disc from the shaft. The method is composed of two basic steps: (1) depositing one or more weld layers in a vicinity of a defective region of the disc using a temperbead welding process and (2) heat treating the disc using an induction heating process. In a first embodiment of the method, the heat treating step includes heating a heat-affected zone of the disc in a vicinity of the one or more weld layers to a temperature T.sub.h, heating a rim region of the disc to a temperature T.sub.r and heating a bore region of the disc to a temperature T.sub.b, where T.sub.h, T.sub.r >T.sub.b. In a second embodiment of the method, the heat treating step includes heating a region of the disc in a vicinity of the one or more weld layers using the induction heating process and concurrently cooling a bore region of the disc. In a third embodiment of the method, the heat treating step includes heating at least a portion of the disc using the induction heating process and concurrently heating the shaft to maintain a predetermined temperature differential between the bore region of the disc and the shaft. In a fourth embodiment of the method, the heat treating step includes heating at least a portion of the disc using the induction heating process and concurrently heating the shaft to maintain a uniform temperature between the bore region of the disc and the shaft.
摘要:
A method of repairing a metallic component, such as a superalloy turbine blade or turbine nozzle, includes the step of preparing the component by stripping the protective coatings from the component. The component is then pre-conditioned for welding by a first hot isostatic process. Once the conditioning sequence is complete, the component is welded using any of a number of welding techniques and by adding weld fillers to the weld area. After the welding step, the component is sealed by a second hot isostatic process treatment performed at conditions similar to the first hot isostatic process. The component is finally prepared for re-entry into service.
摘要:
In one embodiment, the present invention provides a method for welding together two metal pieces, comprising buttering a surface of a first metal piece with a first nickel-based filler metal at a thickness sufficient to isolate a heat-affected zone in the first metal piece from subsequent welding; heat-treating at least the heat-affected zone in the first metal piece; buttering a surface of a second metal piece with a second nickel-based filler metal having the same composition as the first nickel-based filler metal and at a thickness sufficient to isolate a heat-affected zone in the second metal piece from subsequent welding; heat-treating at least the heat-affected zone in the second metal piece; and welding the heat-treated first buttered surface to the heat-treated second buttered surface with a third nickel-based filler metal having the same composition as the first and second nickel-based filler metals.
摘要:
A method of repairing a metallic member, such as a superalloy turbine blade, includes the step of preparing the blade by stripping the protective coatings from the blade. The blade is then pre-conditioned for welding by a first hot isostatic process. Once the blade conditioning sequence is complete, the blade is welded using a laser welding technique and by adding weld fillers to the weld area. After the welding step, the blade is sealed by a second hot isostatic process treatment performed at conditions similar to the first hot isostatic process. The blade is finally prepared for re-entry into service.
摘要:
In one embodiment, the present invention provides a method for welding together two metal pieces, comprising buttering a surface of a first metal piece with a first nickel-based filler metal at a thickness sufficient to isolate a heat-affected zone in the first metal piece from subsequent welding; heat-treating at least the heat-affected zone in the first metal piece; buttering a surface of a second metal piece with a second nickel-based filler metal having the same composition as the first nickel-based filler metal and at a thickness sufficient to isolate a heat-affected zone in the second metal piece from subsequent welding; heat-treating at least the heat-affected zone in the second metal piece; and welding the heat-treated first buttered surface to the heat-treated second buttered surface with a third nickel-based filler metal having the same composition as the first and second nickel-based filler metals.
摘要:
In one embodiment, the present invention provides a method for welding together two metal pieces, comprising buttering a surface of a first metal piece with a first nickel-based filler metal at a thickness sufficient to isolate a heat-affected zone in the first metal piece from subsequent welding; heat-treating at least the heat-affected zone in the first metal piece; buttering a surface of a second metal piece with a second nickel-based filler metal having the same composition as the first nickel-based filler metal and at a thickness sufficient to isolate a heat-affected zone in the second metal piece from subsequent welding; heat-treating at least the heat-affected zone in the second metal piece; and welding the heat-treated first buttered surface to the heat-treated second buttered surface with a third nickel-based filler metal having the same composition as the first and second nickel-based filler metals.
摘要:
Accordingly, the present invention provides a weld filler composition for joining different alloy steel pieces with substantially different chromium content, such as joining low alloy ferritic steel to high alloy ferritic steel, low alloy ferritic steel to austenitic stainless steel, or high alloy ferritic steel to austenitic stainless steel, and a method using the same. In one embodiment, the present invention provides a composition for a weld filler comprising nickel, iron, and chromium, which collectively comprise at least 50% by weight of the weld filler; niobium, carbon, manganese, molybdenum, and silicon, which collectively comprise no more than 50% by weight of the weld filler, and a niobium to carbon ratio of approximately 20 or less.
摘要:
Accordingly, the present invention provides a weld filler composition for joining different alloy steel pieces with substantially different chromium content, such as joining low alloy ferritic steel to high alloy ferritic steel, low alloy ferritic steel to austenitic stainless steel, or high alloy ferritic steel to austenitic stainless steel, and a method using the same. In one embodiment, the present invention provides a composition for a weld filler comprising nickel, iron, and chromium, which collectively comprise at least 50% by weight of the weld filler; niobium, carbon, manganese, molybdenum, and silicon, which collectively comprise no more than 50% by weight of the weld filler, and a niobium to carbon ratio of approximately 20 or less.
摘要:
A method of repairing a metallic component, such as a superalloy turbine blade or turbine nozzle, includes the step of preparing the component by stripping the protective coatings from the component. The component is then pre-conditioned for welding by a first hot isostatic process. Once the conditioning sequence is complete, the component is welded using any of a number of welding techniques and by adding weld fillers to the weld area. After the welding step, the component is sealed by a second hot isostatic process treatment performed at conditions similar to the first hot isostatic process. The component is finally prepared for re-entry into service.
摘要:
In one embodiment, the present invention provides a method for welding together two metal pieces, comprising buttering a surface of a first metal piece with a first nickel-based filler metal at a thickness sufficient to isolate a heat-affected zone in the first metal piece from subsequent welding; heat-treating at least the heat-affected zone in the first metal piece; buttering a surface of a second metal piece with a second nickel-based filler metal having the same composition as the first nickel-based filler metal and at a thickness sufficient to isolate a heat-affected zone in the second metal piece from subsequent welding; heat-treating at least the heat-affected zone in the second metal piece; and welding the heat-treated first buttered surface to the heat-treated second buttered surface with a third nickel-based filler metal having the same composition as the first and second nickel-based filler metals.