摘要:
A light-emitting diode device, including a substrate; and a reflective electrode and a semi-transparent electrode formed over the substrate and an unpatterned white light-emitting layer formed between the reflective electrode and the semi-transparent electrode, the reflective electrode, semi-transparent electrode, and unpatterned white-light-emitting layer forming an optical microcavity, and wherein either the reflective or semi-transparent electrodes is patterned to form a plurality of independently controllable light-emitting elements with at least one light-emitting element having no color filter. Color filters are formed over a side of the semi-transparent electrodes opposite the unpatterned white light-emitting layer in correspondence with the light-emitting elements, the color filters having at least two different colors. Additionally, a reflected-light absorbing layer is located over all of the light-emitting elements.
摘要:
An light-emitting diode device, including a substrate; and a reflective electrode and a semi-transparent electrode formed over the substrate and an unpatterned white light-emitting layer formed between the reflective electrode and the semi-transparent electrode, the reflective electrode, semi-transparent electrode, and unpatterned white-light-emitting layer forming an optical microcavity, and wherein either the reflective or semi-transparent electrodes is patterned to form a plurality of independently controllable light-emitting elements with at least one light-emitting element having no color filter. Color filters are formed over a side of the semi-transparent electrodes opposite the unpatterned white light-emitting layer in correspondence with the light-emitting elements, the color filters having at least two different colors.
摘要:
An light-emitting diode device, including a substrate; and a reflective electrode and a semi-transparent electrode formed over the substrate and an unpatterned white light-emitting layer formed between the reflective electrode and the semi-transparent electrode, the reflective electrode, semi-transparent electrode, and unpatterned white-light-emitting layer forming an optical microcavity, and wherein either the reflective or semi-transparent electrodes is patterned to form a plurality of independently controllable light-emitting elements with at least one light-emitting element having no color filter. Color filters are formed over a side of the semi-transparent electrodes opposite the unpatterned white light-emitting layer in correspondence with the light-emitting elements, the color filters having at least two different colors.
摘要:
A light-emitting device, comprising: a light emitting element on a first side of a transparent substrate or cover through which light is emitted; and a microlens array on a second side, opposite to the first side, of the transparent substrate or cover though which light is emitted; wherein the microlens array comprises individual hemispherical shaped microlenses having a mean diameter of less than 20 micrometers and a mean microlens height to diameter ratio of greater than 0.30, and has a microlens area fill factor greater than 0.8.
摘要:
A light-emitting device, comprising: a light emitting element on a first side of a transparent substrate or cover through which light is emitted; and a microlens array on a second side, opposite to the first side, of the transparent substrate or cover though which light is emitted; wherein the microlens array comprises individual hemispherical shaped microlenses having a mean diameter of less than 20 micrometers and a mean microlens height to diameter ratio of greater than 0.30, and has a microlens area fill factor greater than 0.8.
摘要:
A light-emitting diode device, including a substrate; and a reflective electrode and a semi-transparent electrode formed over the substrate and an unpatterned white light-emitting layer formed between the reflective electrode and the semi-transparent electrode, the reflective electrode, semi-transparent electrode, and unpatterned white-light-emitting layer forming an optical microcavity, and wherein either the reflective or semi-transparent electrodes is patterned to form a plurality of independently controllable light-emitting elements with at least one light-emitting element having no color filter. Color filters are formed over a side of the semi-transparent electrodes opposite the unpatterned white light-emitting layer in correspondence with the light-emitting elements, the color filters having at least two different colors. Additionally, a reflected-light absorbing layer is located over all of the light-emitting elements.
摘要:
An organic light-emitting diode (OLED) device, comprising: a substrate; an OLED comprising first and second electrodes and one or more layers of organic light-emitting material formed between the electrodes, wherein at least one electrode comprises a transparent electrode, the transparent electrode and layer(s) of organic light-emitting material having a first refractive index range; and an encapsulating cover; wherein at least one of the substrate or cover comprises a transparent substrate or cover having a second refractive index and through which light from the OLED is emitted; and further comprising a light scattering layer located between the substrate and cover, and a transparent low-index element having a third refractive index lower than each of the first refractive index range and second refractive index and located between the scattering layer and the transparent substrate or cover.
摘要:
A top-emitting organic light-emitting diode (OLED) device, comprising: a substrate; an OLED comprising a reflective electrode formed on the substrate; one-or-more layers of organic light-emitting material formed over the reflective electrode; and a transparent electrode formed over the one-or-more layers of organic light-emitting material; a light-scattering layer having a rough surface formed over and in contact with the OLED, a cover affixed to the substrate forming a gap between the cover and the light scattering layer; and wherein the gap is a vacuum or the gap is filled with a relatively low-refractive index gas and the light-scattering layer comprises a plurality of relatively high-refractive index light-scattering transparent particles projecting into the gap without contacting the cover and further comprising an adhesive binder in contact with at least some of the light-scattering particles to adhere the light-scattering particles to the OLED.
摘要:
An organic light-emitting diode (OLED) device, comprising: first and second non-metallic transparent electrodes, and one or more layers of organic material formed between the first and second non-metallic transparent electrodes, the layers of organic material including one or more light-emitting layers; and one or more non-metallic reflective layers located on a side of either of the first or second non-metallic transparent electrodes opposite to the organic material layers; wherein the device further comprises a light transmissive scattering layer in optical contact with the organic material layers and the electrodes or wherein at least one of the one or more non-metallic reflective layers comprises a reflective scattering layer in optical contact with the organic material layers and the electrodes. Additionally, a low-index layer is preferably employed in various embodiments to improve device sharpness.
摘要:
An organic light-emitting diode (OLED) device, comprising: first and second transparent electrodes, and one or more layers of organic material formed between the first and second transparent electrodes, the layers of organic material including one or more light-emitting layers; a reflective layer having a surface plasmon-polariton-supporting reflective surface located on a side of either of the first or second transparent electrodes opposite to the organic material layers; and a scattering layer in optical contact with the organic material layers and the electrodes. In certain embodiments, layer spacing is preferably designed such that the distance between the reflective surface and at least one of the one or more light-emitting layers is equal to or greater than 60 nm. Additionally, a low-index layer is preferably employed in various embodiments to improve device sharpness.