摘要:
This invention relates to an electrophoretic display comprising cells of well-defined shape, size and aspect ratio which cells are filled with charged pigment particles dispersed in a solvent, and novel processes for its manufacture.
摘要:
This invention relates to an electrophoretic display or a liquid crystal display and novel processes for its manufacture. The electrophoretic display (EPD) of the present invention comprises microcups of well-defined shape, size and aspect ratio and the microcups are filled with charged pigment particles dispersed in an optically contrasting dielectric solvent. The liquid crystal display (LCD) of this invention comprises well-defined microcups filled with at least a liquid crystal composition having its ordinary refractive index matched to that of the isotropic cup material. A novel roll-to-roll process and apparatus of the invention permits the display manufacture to be carried out continuously by a synchronized photo-lithographic process. The synchronized roll-to-roll process and apparatus permits a pre-patterned photomask, formed as a continuous loop, to be rolled in a synchronized motion in close parallel alignment to a web which has been pre-coated with a radiation sensitive material, so as to maintain image alignment during exposure to a radiation source. The radiation sensitive material may be a radiation curable material, in which the exposed and cured portions form the microcup structure. In an additional process step, the radiation sensitive material may be a positively working photoresist which temporarily seals the microcups. Exposure of a selected subset of the microcups via the photomask image permits selective re-opening, filling and sealing of the microcup subset. Repetition with additional colors permits the continuous assembly of a multicolor EPD or LCD display.
摘要:
This invention relates to an electrophoretic display or a liquid crystal display and novel processes for its manufacture. The electrophoretic display (EPD) of the present invention comprises microcups of well-defined shape, size and aspect ratio and the microcups are filled with charged pigment particles dispersed in an optically contrasting dielectric solvent. The liquid crystal display (LCD) of this invention comprises well-defined microcups filled with at least a liquid crystal composition having its ordinary refractive index matched to that of the isotropic cup material. A novel roll-to-roll process and apparatus of the invention permits the display manufacture to be carried out continuously by a synchronized photo-lithographic process. The synchronized roll-to-roll process and apparatus permits a pre-patterned photomask, formed as a continuous loop, to be rolled in a synchronized motion in close parallel alignment to a web which has been pre-coated with a radiation sensitive material, so as to maintain image alignment during exposure to a radiation source. The radiation sensitive material may be a radiation curable material, in which the exposed and cured portions form the microcup structure. In an additional process step, the radiation sensitive material may be a positively working photoresist which temporarily seals the microcups. Exposure of a selected subset of the microcups via the photomask image permits selective re-opening, filling and sealing of the microcup subset. Repetition with additional colors permits the continuous assembly of a multicolor EPD or LCD display.
摘要:
This invention relates to an electrophoretic display comprising cells which are filled with charged particles dispersed in a solvent and are individually sealed with a polymeric sealing layer which is an integral part of the display and is curved.
摘要:
This invention relates to an electrophoretic display comprising cells which are filled with charged particles dispersed in a solvent and are individually sealed with a polymeric sealing layer.
摘要:
This invention relates to an electrophoretic display comprising a plurality of cells, each of said cells comprises: a) partition walls; b) an electrophoretic fluid filled therein; c) a polymeric sealing layer to enclose the electrophoretic fluid within the cell; and d) an interface between the electrophoretic fluid and the sealing layer.
摘要:
This invention relates to an electrophoretic display comprising cells which are filled with charged particles dispersed in a solvent and are individually sealed with a polymeric sealing layer.
摘要:
This invention relates to an electrophoretic display comprising a transparent top viewing electrode, a bottom electrode and a plurality of isolated cells having well-defined size, shape and aspect ratio, said cells filled with charged pigment particles dispersed in a dielectric solvent or solvent mixture, and a color filter placed with the top transparent electrode.
摘要:
The present invention is directed to a process which comprises removing and stripping off part of the display panel in order to expose and connect the conductor lines on an electrode plate to a driver circuitry. More specifically the process involves (1) preparing a display panel having filled display cells sandwiched between a first and a second substrate layers, preferably by a roll-to-roll process; (2) removing part of a first substrate by asymmetrical cutting by, for example, a die, diamond, knife or laser cutting method to expose the layers underneath (which may include adhesive layer, primer layer, display cell layer and in the case of a display prepared by the microcup technology, the microcup layer and the sealing layer); and (3) stripping off the exposed layers by a stripping solvent or solution. After stripping, the conductor lines on the second substrate are exposed and ready for connection to the driver circuitry.
摘要:
The present invention is directed to methods for improving the performance of an electrophoretic display by modifying the display cell surface. More specifically, the methods are directed to modification of the microcup surface after the microcups are released from the mold. The microcups which have undergone any of the treatment methods of the invention show significant improvement in their surface properties, such as chemical functionality, surface roughness, surface tension, morphology, surface charge, surface reflectivity, surface conductivity and optical properties, particularly optical density in the visible light region. An electrophoretic display formed from the treated microcups has many advantages. For example, the display shows a higher contrast ratio, lower electro-optic response time, lower driving voltage, longer shelf life, higher imageincreasing bistability and higher threshold voltage. In addition, it exhibits an improved image quality by reducing undesirable scum formation or irreversible particle deposition on the microcup surface.