摘要:
A combustion apparatus for combusting including: a boiler defining an enclosed flue gas path having a combustion zone and a burnout zone, wherein flue gas is formed in the combustion zone and the combustion flue gas comprising nitrogen oxides; a fuel injector aligned with and introducing fuel into the combustion zone and a combustion air injector aligned with and introducing air into the combustion zone; an overfire air system adjacent the burnout zone comprising an overfire air port adjacent the burnout zone and through which overfire air flows into the burnout zone, and a nitrogen reagent injector having an outlet aligned with the overfire air system and injecting nitrogen reagent gas or small droplets into said overfire air, wherein said small droplets have an average diameter of no greater than 50 microns.
摘要:
A combustion apparatus for combusting including: a boiler defining an enclosed flue gas path having a combustion zone and a burnout zone, wherein flue gas is formed in the combustion zone and the combustion flue gas comprising nitrogen oxides; a fuel injector aligned with and introducing fuel into the combustion zone and a combustion air injector aligned with and introducing air into the combustion zone; an overfire air system adjacent the burnout zone comprising an overfire air port adjacent the burnout zone and through which overfire air flows into the burnout zone, and a nitrogen reagent injector having an outlet aligned with the overfire air system and injecting nitrogen reagent gas or small droplets into said overfire air, wherein said small droplets have an average diameter of no greater than 50 microns.
摘要:
A method of decreasing the concentration of nitrogen oxides in a combustion flue gas in which a nitrogen reducing agent is introduced together with the overfire air to mixes with the products of primary combustion along with the overfire air. The nitrogen agent reduced NOx as it passes through the temperature regime that is optimum for the NOx reduction as overfire air and flue gas mix. The transition from low to high temperature effectively eliminates ammonia slip. Additionally, the nitrogen agent may be mixed with the overfire air stream in such a manner that it is optimally shielded from early mixing with the products of primary combustion, where a portion of the overfire air reacts initially with any residual carbon monoxide (CO) that would otherwise interfere with the NOx reduction chemistry.
摘要:
A method to reduce mercury in gas emissions from the combustion of coal is disclosed. Mercury emissions can be reduced by staging combustion process and/or reducing boiler excess oxygen. Fly ash formed under combustion staging conditions is more reactive towards mercury than fly ash formed under typical combustion conditions. Reducing boiler excess oxygen can also improve ability of fly ash to adsorb mercury.
摘要:
A method to reduce mercury in gas emissions from the combustion of coal is disclosed. Mercury emissions can be reduced by staging combustion process and/or reducing boiler excess oxygen. Fly ash formed under combustion staging conditions is more reactive towards mercury than fly ash formed under typical combustion conditions. Reducing boiler excess oxygen can also improve ability of fly ash to adsorb mercury.
摘要:
A method to reduce mercury in gas emissions from the combustion of coal is disclosed. Mercury emissions can be reduced by staging combustion process and/or reducing boiler excess oxygen. Fly ash formed under combustion staging conditions is more reactive towards mercury than fly ash formed under typical combustion conditions. Reducing boiler excess oxygen can also improve ability of fly ash to adsorb mercury.
摘要:
A method for facilitating reducing mercury in a fluid stream using a catalytic bed assembly including at least a first catalytic bed. The method includes receiving a flow of fluid including mercury at the catalytic bed assembly; injecting a flow of a compound including ammonia and a first mercury oxidizer upstream of the first catalytic bed; and oxidizing the mercury using the mercury oxidizer and the catalytic bed assembly.
摘要:
A method to reduce mercury in gas emissions from the combustion of low rank coal in a combustion system including: combusting coal having a low chlorine content in the combustion system, wherein elemental mercury (Hg0) is released in the flue gas produced by the combustion of the low rank coal; releasing chlorine into the flue gas by combusting a coal having a high chlorine in the combustion system; reacting the elemental mercury and released chlorine in the flue gas to oxidize the mercury; adsorbing at least a portion of the oxidized mercury generated by the combustion of the coal with an adsorbent in the flue gas, and collecting the adsorbent with the oxidized mercury in a combustion waste treatment system.
摘要:
A method to reduce emissions in flue gas due to combustion of coal in a combustion unit including the steps of: combusting coal in a primary combustion zone of the combustion unit; releasing elemental mercury from the combustion into the flue gas; injecting NH4Cl, NH4Br, or NH4I into the flue gas; oxidizing the elemental mercury with halogen from the additive; adsorbing the oxidized mercury generated by the combustion of the coal with an adsorbent in the flue gas, and collecting the adsorbent with the oxidized mercury in a combustion waste treatment system.
摘要:
Methods and systems for reducing nitrogen oxides in combustion flue gas is provided. The method includes combusting a fuel in a main combustion zone such that a flow of combustion flue gas is generated wherein the combustion flue gas includes at least one nitrogen oxide species, establishing a fuel-rich zone, forming a plurality of reduced N-containing species in the fuel rich zone, injecting over-fire air into the combustion flue gas downstream of fuel rich zone, and controlling process parameters to provide conditions for the reduced N-containing species to react with the nitrogen oxides in the OFA zone to produce elemental nitrogen such that a concentration of nitrogen oxides is reduced.