摘要:
Feature quantities of a transmitted picture and a received picture are extracted from a first and second block-by-block feature quantity extraction parts which are provided on a transmitting and receiving sides, respectively. The extracted feature quantities are transmitted to a block degradation calculation part which compares the transmitted feature quantities and finds the degree of picture quality degradation for each block. Next, a median filter replaces the degree of picture quality degradation for the each block with a median of the degrees of picture quality degradation among the neighboring blocks of the each block. Then, a degraded block detection part compares the median with a predetermined threshold and detects a degraded block. Finally, a degraded region detection part removes an isolated degraded block and detects a degraded region. According to the invention, local picture quality degradation in a frame caused by transmission failure can be automatically detected with high accuracy.
摘要:
A matching section performs motion estimation upon a predetermined processing unit of input video (p) by, e.g., an iterative gradient method. A motion vector (v) obtained by the iterative gradient method is obtained by the expression v=α·Δv+v0 (wherein v0 indicates an initial displacement motion vector and Δv indicates a differential vector). A characteristic amount extraction section extracts a characteristic amount from the distribution of motion vectors obtained by the motion estimation. A parameter determination section determines a conversion parameter α applied to the next processing unit by the characteristic amount. If the characteristic amount is equal to or larger than a predetermined threshold, the conversion parameter α is determined to be larger (e.g., α=1). If the characteristic amount is smaller than the threshold, the conversion parameter α is determined to be smaller (e.g., α=0.1).
摘要:
A matching section performs motion estimation upon a predetermined processing unit of input video (p) by, e.g., an iterative gradient method. A motion vector (v) obtained by the iterative gradient method is obtained by the expression v=α·Δv+v0 (wherein v0 indicates an initial displacement motion vector and Δv indicates a differential vector). A characteristic amount extraction section extracts a characteristic amount from the distribution of motion vectors obtained by the motion estimation. A parameter determination section determines a conversion parameter α applied to the next processing unit by the characteristic amount. If the characteristic amount is equal to or larger than a predetermined threshold, the conversion parameter α is determined to be larger (e.g., α=1). If the characteristic amount is smaller than the threshold, the conversion parameter α is determined to be smaller (e.g., α=0.1).
摘要:
A matching section performs motion estimation upon a predetermined processing unit of input video (p) by, e.g., an iterative gradient method. A motion vector (v) obtained by the iterative gradient method is obtained by the expression v=α·Δv+v0 (wherein v0 indicates an initial displacement motion vector and Δv indicates a differential vector). A characteristic amount extraction section extracts a characteristic amount from the distribution of motion vectors obtained by the motion estimation. A parameter determination section determines a conversion parameter α applied to the next processing unit by the characteristic amount. If the characteristic amount is equal to or larger than a predetermined threshold, the conversion parameter α is determined to be larger (e.g., α=1). If the characteristic amount is smaller than the threshold, the conversion parameter α is determined to be smaller (e.g., α=0.1).
摘要:
A first characteristic value extracting unit extracts a characteristic value from a picture transmitted from a transmission side, and a second characteristic value extracting unit extracts a characteristic value from a picture received on a reception side. These extracted characteristic values are supplied to a central monitoring unit through low speed lines, respectively. In the central monitoring unit, an MSE (mean square error) is assessed from the data by an MSE assessing unit. The first and second characteristic value extracting units divide an input picture into blocks, subject the blocks to an orthogonal transformation, or subject the blocks to PN sequence multiplication before the orthogonal transformation, and extract and output orthogonal transformation coefficients. The MSE assessing unit determines the differences between corresponding coefficients on the transmission side and the reception side and squares the differences, adds the squared differences for every coefficients or every blocks, and assess an MSE based on the added values referred to a table. With this operation, the MSE can be effectively assessed using a smaller amount of extracted data (accordingly, slower speed lines can be used in the central monitoring unit).
摘要:
Characteristic amounts in each small region of audio signals transmitted in the working system and the standby system are extracted by characteristic amount calculators 6-1, 6-2. A characteristic amount comparator 7 compares the characteristic amounts and judges occurrence of a fault. Characteristic amount difference calculators 9-1, 9-2, ∥D∥ comparator 10, and faulty system judging unit 11 judges the system having a fault. Majority decision processor 12 and significance judging unit 13 enhance the reliability of the judgment. Delay difference of audio signals between systems is roughly detected by sub-sampling audio signals of two systems and comparing them, and then accurately detected without sub-sampling. Delay difference between audio signals is adjusted by the detected delay difference.
摘要:
Characteristic amounts in each small region of audio signals transmitted in the working system and the standby system are extracted by characteristic amount calculators 6-1, 6-2. A characteristic amount comparator 7 compares the characteristic amounts and judges occurrence of fault of a fault. Characteristic amount difference calculators 9-1, 9-2, ∥D∥ comparator 10, and faulty system judging unit 11 judges the system having a fault. Majority decision processor 12 and significance judging unit 13 enhance the reliability of the judgement. Delay difference of audio signals between systems is roughly detected by sub-sampling audio signals of two systems and comparing them, and then accurately detected without sub-sampling. Delay difference between audio signals is adjusted by the detected delay difference.
摘要:
Characteristic amounts in each small region of audio signals transmitted in the working system and the standby system are extracted by characteristic amount calculators 6-1, 6-2. A characteristic amount comparator 7 compares the characteristic amounts and judges occurrence of fault of a fault. Characteristic amount difference calculators 9-1, 9-2, ∥D∥ comparator 10, and faulty system judging unit 11 judges the system having a fault. Majority decision processor 12 and significance judging unit 13 enhance the reliability of the judgement. Delay difference of audio signals between systems is roughly detected by sub-sampling audio signals of two systems and comparing them, and then accurately detected without sub-sampling. Delay difference between audio signals is adjusted by the detected delay difference.
摘要:
Characteristic amounts in each small region of audio signals transmitted in the working system and the standby system are extracted by characteristic amount calculators 6-1, 6-2. A characteristic amount comparator 7 compares the characteristic amounts and judges occurrence of a fault. Characteristic amount difference calculators 9-1, 9-2, ∥D∥ comparator 10, and faulty system judging unit 11 judges the system having a fault. Majority decision processor 12 and significance judging unit 13 enhance the reliability of the judgment. Delay difference of audio signals between systems is roughly detected by sub-sampling audio signals of two systems and comparing them, and then accurately detected without sub-sampling. Delay difference between audio signals is adjusted by the detected delay difference.
摘要:
In a transmission chain having series-connected a TSC unit, an encoder, a transmission path, a decoder, and an up-converter, characteristic value extracting units are connected to input/output points A, B, C, and D of these transmission processing units respectively. Each characteristic value extracting unit extracts characteristics like an average value m and a variance σ2 of luminance of a picture, for example. These characteristic values are transmitted to a central monitoring unit via a low-speed line. A characteristic value comparator compares the characteristic values. When a difference equal to or larger than a predetermined threshold value has occurred in the characteristic values, the characteristic value comparator decides that an abnormality has occurred in the image in transmission. According to the present invention, it is possible to provide an apparatus for assessing quality of a picture in transmission and an apparatus for remote-monitoring picture quality of a picture in transmission that are capable of assessing the picture quality of a transmission picture in high precision, during an actual transmission of the picture.