Abstract:
The disclosure relates to compositions exhibiting a UV resistance of ΔE ranging from more than 0 to less than or equal to 10 units after exposure to ultraviolet light for 300 hours, per ASTM D-4459 protocol. The compositions can include at least 15 wt. % of a polyetherimide; at least 35 wt. % of a polycarbonate; a polyetherimide siloxane; and optionally, at least one UV stabilizer. The disclosure also relates to methods of shaping such compositions and articles produced from such compositions.
Abstract:
The disclosure relates to compositions exhibiting a UV resistance of ΔE ranging from more than 0 to less than or equal to 10 units after exposure to ultraviolet light for 300 hours, per ASTM D-4459 protocol. The compositions can include at least 15 wt. % of a polyetherimide; at least 35 wt. % of a polycarbonate; a polyetherimide siloxane; and optionally, at least one UV stabilizer. The disclosure also relates to methods of shaping such compositions and articles produced from such compositions.
Abstract:
The disclosure relates to compositions exhibiting a UV resistance of ΔE ranging from more than 0 to less than or equal to 10 units after exposure to ultraviolet light for 300 hours, per ASTM D-4459 protocol. The compositions can include at least 15 wt % of a polyetherimide; at least 35 wt % of a polycarbonate; a polyetherimide siloxane; and optionally, at least one UV stabilizer. The disclosure also relates to methods of shaping such compositions and articles produced from such compositions.
Abstract:
An article comprises a lens having a width of 0.1 millimeters to 100 millimeters, a length of 0.5 millimeters to 500 millimeters, and a thickness of 0.2 millimeters to 5 millimeters; which transmits more than 60% of light having a wavelength of 760 nanometers to 2500 nanometers. The lens comprises a polymer and a colorant component. The lens is transparent and dimensionally stable at a wall thickness of 0.2 millimeters to 5.0 millimeters and remains transparent and dimensionally stable after being (a) exposed to a precondition of 60° C./60% relative humidity for 120 hours and (b) then subjected to a lead free solder test having a peak temperature of 260° C. for up to 30 seconds.