Abstract:
A material includes a transparent substrate coated with a stack of thin layers including at least one silver-based functional metallic layer, at least one blocking layer located directly in contact with a silver-based functional metallic layer, and at least one zinc-based metallic layer located above or below this silver-based functional metallic layer, directly in contact or separated by one or more layers having a total thickness of less than or equal to 20 nm.
Abstract:
A transparent electrode for an organic light-emitting diode including, on a transparent support made of mineral glass, n individual stacks of thin layers, each individual stack successively including, starting from the glass support, (a) a layer of mixed tin zinc oxide, (b) a crystalline layer of zinc oxide, optionally doped with aluminum, (c) a metallic silver layer, in contact with the zinc oxide layer, and positioned between each silver layer and the mixed tin zinc oxide layer or layers closest thereto is (d) a layer made of silicon nitride or made of silica, optionally doped with a metal. There is also provided It also relates to an an organic light-emitting diode device containing such an electrode and to a process for manufacturing such a device.
Abstract:
A material including a transparent substrate coated with a stack of thin layers including at least one silver-based functional metallic layer and at least one zinc-based metallic layer. The zinc-based metallic layer is located above or below a silver-based functional metallic layer and separated from this silver-based functional metallic layer by at least one intermediate oxide layer based on one or more elements chosen from zinc, titanium, zirconium, tin, niobium, magnesium, hafnium and nickel.
Abstract:
A material includes a transparent substrate coated with a stack of thin layers including at least one silver-based functional metallic layer, at least one zinc-based metallic layer, located above and/or below a silver-based functional metallic layer, and at least one nickel oxide-based layer located above and/or below this silver-based functional metallic layer and separated from this layer by at least one crystallized dielectric layer.
Abstract:
A transparent substrate is provided, on a main face, with a stack of thin layers including at least one metallic functional layer having properties of reflection in the infrared region and/or in the solar radiation region, based on silver or on silver-containing metal alloy, and two antireflective coating. The antireflective coatings each include at least one dielectric layer. The functional layer is positioned between the two antireflective coatings. Additionally, at least one nickel oxide NixO layer is located on and in contact with the functional layer starting with the substrate. A physical thickness of the nickel oxide NixO layer is at least 0.3 nm.
Abstract:
An electrically conducting support for an electrochromic device and its manufacture; the electrically conducting support including, in this order: a substrate, an optional underlayer, a first inorganic layer on the optional underlayer or on the substrate, partially or completely structured in thickness with traversing holes or cavities, an electrode, made of metal grid with strands which exhibit, along their length, a rough central region between less rough lateral regions which are flush with the top surface, an electrically conducting coating made of inorganic material.
Abstract:
A scattering conductive support for an organic light-emitting diode device includes, in this order, on a substrate, a scattering layer, a high index layer, a lower electrode with a dielectric underlayer with a refractive index n1 and with a thickness t1 of greater than or equal to 0 nm, a dielectric crystalline layer, a single metal layer having an electrical conduction role, which is based on silver, with a thickness of less than 8.5 nm, and an overlayer, the lower electrode additionally having a thickness t1 by the refractive index n1 product factor expressed in a graph t1n1 defining a region of light efficiency.
Abstract translation:用于有机发光二极管器件的散射导电支撑件依次包括衬底,散射层,高折射率层,具有折射率n1和厚度t1较大的电介质底层的下电极 电介质结晶层,具有导电作用的单一金属层,其基于银,厚度小于8.5nm;以及覆盖层,下电极另外具有厚度t1 by 在限定光效率区域的图形t1n1中表示的折射率n1乘积因子。
Abstract:
A transparent substrate is provided, on a main face, with a stack of thin layers including at least one, metallic functional layer having properties of reflection in the infrared region and/or in the solar radiation region, based on silver or on silver-containing metal alloy, and two antireflective coatings. The antireflective coatings each include at least one dielectric layer. The functional layer is positioned between the two antireflective coatings. At least one nickel oxide NixO layer is located under the functional layer in the direction of the substrate and/or above the functional layer, with interposition of at least one layer or of just one layer made of a different material between the or each nickel oxide NixO layer and the functional layer.
Abstract:
An electrically conductive OLED carrier includes in this order a glazing substrate; an electrode arranged in a metal grid made up of strands; an electrically insulating light extraction layer under the metal grid; and a layer partially structured in its thickness. The layer of refractive is of index n3 of 1.7 to 2.3, and is located on the light extraction layer. The partially structured layer is formed from a region structured with cavities at least partially containing the metal grid; and from another region, called the low region, located on the light extraction layer. The separation H between the surface of the structured region called the high surface, and therefore that furthest from the substrate, and the surface of the metal grid called the upper surface, and therefore that furthest from the substrate is, in absolute value, smaller than or equal to 100 nm.
Abstract:
An electrically conductive OLED carrier includes a glazing substrate; an electrode arranged in a metal grid made up of strands; an insulating light extraction layer under the metal grid; and a layer partially structured in its thickness, this layer being of given composition and of refractive index n3 of 1.7 to 2.3, and being located on the light extraction layer, which partially structured layer is formed from a region structured with cavities containing the metal grid, and from another region, called the low region, located on the light extraction layer, the separation H between that surface of the structured region called the high surface, and that surface of the metal grid called the upper surface, and therefore that furthest from the substrate, is larger than 100 nm. The strands have along their length a central zone between lateral zones that are flush with the high surface.