Abstract:
There is provided an organic light emitting display capable of increasing an aperture ratio. The organic light emitting display includes red pixels including red emission regions, green pixels including green emission regions, and blue pixels including blue emission regions. In at least one of the red emission regions, the green emission regions, and the blue emission regions, a distance between an emission region and an adjacent emission region above the emission region is different from a distance between the emission region and another adjacent emission region below the emission region.
Abstract:
Luminance correction systems and methods capable of reducing or removing luminance mura of display devices are provided. One luminance correction system includes: a display device including a plurality of pixels, the pixels including a plurality of sub-pixels, each of the pixels comprising at least two of the sub-pixels; an image capturing unit including a plurality of charge-coupled device (CCD) image capturing elements, an n×n arrangement of the image capturing elements corresponding torn of the pixels, n and m being natural numbers greater than or equal to 2; and a luminance correction device configured to generate a representative luminance value with respect to the m of the pixels based on luminance values measured by the n×n arrangement of the image capturing elements, and calculate a correction value with respect to the m of the pixels according to a difference between the representative luminance value and a target luminance value.
Abstract:
A display panel includes a first substrate, a first transparent electrode disposed on the first substrate, and to which a first voltage is applied in a display mode which an image is displayed, a polymer dispersed liquid crystal layer disposed on the first transparent electrode having photosensitive polymer molecules and liquid crystal molecules, and a second transparent electrode disposed on the polymer dispersed liquid crystal layer and to which a second voltage is applied in the display mode.
Abstract:
A display device including a substrate, a first upper power line, a conductive member, a protective insulating layer, an upper connection member, and a sub-pixel structure. The upper connection member is disposed in a first pad area and a first peripheral area on a planarization layer, and electrically connects the first upper power line and the conductive member through a first contact hole, which is formed in the protective insulating layer and the planarization layer located on the conductive member, and a second contact hole, which is formed in the protective insulating layer and the planarization layer located on the first upper power line.
Abstract:
A pixel includes first to fourth transistors and a driving transistor. The first transistor is connected between a data line and a first node and has a gate electrode to receive a scan signal. The driving transistor is connected between the first node and a second node and has a gate electrode connected to a third node. The second transistor is connected between the second and third nodes and has a gate electrode to receive the scan signal. The third transistor is connected between first power and the first node and has a gate electrode to receive an emission signal. The fourth transistor is connected between the first and second nodes and has a gate electrode to receive an initialization signal. An organic light emitting diode is connected between the second node and second power. A storage capacitor is connected between the first power and third node.
Abstract:
Artifacts in a specific pattern due to a time difference in a VTDC driving scheme may be prevented. A display device includes: a display including a first pixel circuit, a second pixel circuit, and a pixel group having a first light emitting element, a second light emitting element, a third light emitting element and a fourth light emitting element arranged in a first direction; and a light emission driver generating a first sub-light-emission control signal for controlling emission of the first light emitting element and a second sub-light-emission control signal for controlling emission of the second light emitting element in a first subframe, and generating a third sub-light-emission control signal for controlling emission of the third light emitting element and a fourth sub-light-emission control signal for controlling emission of the fourth light emitting element in a second subframe.
Abstract:
Artifacts in a specific pattern due to a time difference in a VTDC driving scheme may be prevented. A display device includes: a display including a first pixel circuit, a second pixel circuit, and a pixel group having a first light emitting element, a second light emitting element, a third light emitting element and a fourth light emitting element arranged in a first direction; and a light emission driver generating a first sub-light-emission control signal for controlling emission of the first light emitting element and a second sub-light-emission control signal for controlling emission of the second light emitting element in a first subframe, and generating a third sub-light-emission control signal for controlling emission of the third light emitting element and a fourth sub-light-emission control signal for controlling emission of the fourth light emitting element in a second subframe.
Abstract:
There is provided an organic light emitting display capable of increasing an aperture ratio. The organic light emitting display includes red pixels including red emission regions, green pixels including green emission regions, and blue pixels including blue emission regions. In at least one of the red emission regions, the green emission regions, and the blue emission regions, a distance between an emission region and an adjacent emission region above the emission region is different from a distance between the emission region and another adjacent emission region below the emission region.
Abstract:
A display panel driver drives pixels based on first power having at least three voltage levels, second power having a constant voltage, and third power having two voltage levels. Each pixel includes a first transistor connected between first and second nodes and including a gate electrode to receive a scan signal, a second transistor connected between the second node and a third node in series with the first transistor and including a gate electrode to receive the third power, and a driving transistor connected between a source of the first power and the third node and including a gate electrode connected to the first electrode to control a driving current for an organic light emitting diode. A first capacitor is connected between a source of the third power and the first node, and a second capacitor is connected between the second node and one of the data lines.
Abstract:
A display panel driver drives pixels based on first power having at least three voltage levels, second power having a constant voltage, and third power having two voltage levels. Each pixel includes a first transistor connected between first and second nodes and including a gate electrode to receive a scan signal, a second transistor connected between the second node and a third node in series with the first transistor and including a gate electrode to receive the third power, and a driving transistor connected between a source of the first power and the third node and including a gate electrode connected to the first electrode to control a driving current for an organic light emitting diode. A first capacitor is connected between a source of the third power and the first node, and a second capacitor is connected between the second node and one of the data lines.