Abstract:
An optical compensation method for a display device including a pixel is provided. The method includes: providing test data having a first grayscale value to the display device; measuring a luminance of the pixel which emits light based on the test data; and calculating a compensation grayscale value based on a second target luminance and the measured luminance of the pixel. The second target luminance is lower than a first target luminance which is set based on the first grayscale value.
Abstract:
A display device includes: a display panel including scan lines, data lines, and color pixels located at crossing regions of the scan lines and the data lines, each of the color pixels including a driving transistor, the color pixels including first color pixels, second color pixels, and third color pixels; a scan driver configured to transfer a scan signal; a data driver configured to transfer an image data signal; an initialization voltage controller configured to set different initialization voltages for each pixel during each frame according to a threshold voltage deviation for the driving transistor of each pixel and calculate the initialization voltages including first, second, and third initialization voltages corresponding to the plurality of color pixels; an initialization voltage driver configured to apply the calculated first, second, and third initialization voltages; and a signal controller configured to generate and transfer a control signal and the image data signals.
Abstract:
A stain compensating apparatus includes a camera, an input signal processing part, an edge compensating part and a stain compensating value generating part. The camera captures a display image from the display panel. The input signal processing part generates a luminance profile based on the display image captured by the camera. The edge compensating part compensates the luminance profile of a curved portion of the display panel. The stain compensating value generating part generates a stain compensating value for a pixel of the display panel using the compensated luminance profile.
Abstract:
A stain compensating apparatus includes a camera, an input signal processing part, an edge compensating part and a stain compensating value generating part. The camera captures a display image from the display panel. The input signal processing part generates a luminance profile based on the display image captured by the camera. The edge compensating part compensates the luminance profile of a curved portion of the display panel. The stain compensating value generating part generates a stain compensating value for a pixel of the display panel using the compensated luminance profile.
Abstract:
Luminance correction systems and methods capable of reducing or removing luminance mura of display devices are provided. One luminance correction system includes: a display device including a plurality of pixels, the pixels including a plurality of sub-pixels, each of the pixels comprising at least two of the sub-pixels; an image capturing unit including a plurality of charge-coupled device (CCD) image capturing elements, an n×n arrangement of the image capturing elements corresponding torn of the pixels, n and m being natural numbers greater than or equal to 2; and a luminance correction device configured to generate a representative luminance value with respect to the m of the pixels based on luminance values measured by the n×n arrangement of the image capturing elements, and calculate a correction value with respect to the m of the pixels according to a difference between the representative luminance value and a target luminance value.
Abstract:
A pixel array structure of a display device, for example, an organic light emitting display device, includes a plurality of pixel units. In the pixel array structure, each of the pixel units includes four color pixels arranged in a lattice form, and a white sub-pixel positioned at the center of the pixel unit. The four pixels are disposed at a periphery of the pixel unit. In the pixel array structure, pixels are efficiently arranged in consideration of characteristics of the pixels.
Abstract:
A display device includes a display panel that includes a pixel, a current sensor that measures a driving current provided to the display panel, and a timing controller that calculates a reference driving current and a degradation ratio of the pixel based on first image data provided to the display panel and compensates second image data based on the driving current, the reference driving current, and the degradation ratio of the pixel.
Abstract:
A display device is disclosed. In one aspect, the device includes a display panel that includes i) a plurality of pixels including first and second light emission control transistors, ii) a first light emission driver configured to generate a first switching control signal, iii) a second light emission driver configured to generate a second switching control signal, iv) a signal controller configured to generate and transfer a first light emission control signal and v) a light emission controller configured to generate and transfer a second light emission control signal. The light emission controller acquires information of a gray depth from a result value obtained by summing gray data, determines a light emission control algorithm according to the gray depth, and generates the second light emission control signal so that the pixels emit light during different light emission periods for a plurality of frames.
Abstract:
A pixel array structure of a display device, for example, an organic light emitting display device, includes a plurality of pixel units. In the pixel array structure, each of the pixel units includes four color pixels arranged in a lattice form, and a white sub-pixel positioned at the center of the pixel unit. The four pixels are disposed at a periphery of the pixel unit. In the pixel array structure, pixels are efficiently arranged in consideration of characteristics of the pixels.
Abstract:
An apparatus and method for compensating an image of a display device are disclosed. The image compensation apparatus of a display device comprises a scatterometer configured to analyze luminance of a display image according to a test initialization voltage and a test data voltage applied to a plurality of pixels and to measure a deviation of a threshold voltage of a driving transistor of the plurality of pixels; a voltage controller configured to divide the display panel into a predetermined area according to a deviation of a threshold voltage of the driving transistor and to calculate different initialization voltages that initialize driving of pixels included in the area on a predetermined area basis; and an initialization voltage supplier configured to apply a corresponding initialization voltage calculated in the voltage controller to the plurality of pixels included in the predetermined area.