Abstract:
An organic light-emitting display system and a method of manufacturing the same are disclosed. In one aspect, the organic light-emitting display system includes a substrate, a display unit that defines an active area on the substrate and includes a plurality of thin film transistor (TFTs), and an encapsulation layer that seals the display unit and has a stacked structure in which at least a first inorganic film, a first organic film, and a second inorganic film are sequentially stacked. The TFTs includes an active layer, a gate electrode, a source electrode, a drain electrode, and an interlayer insulating film that is disposed between the gate electrode and the source electrode and between the gate electrode and the drain electrode, wherein the second inorganic film directly contacts the interlayer insulating film outside the active area. Accordingly, in various embodiments, since an inorganic layer of a thin film encapsulation layer is prevented from being cracked, penetration of external moisture or oxygen into the active area of the display can be reduced or prevents.
Abstract:
A polymer compound has a repeating unit represented by Formula 1 and an organic light-emitting display device including the polymer compound. wherein R1, R2, R3, R4, R5, R6, R7, R8, p, a, b, and c are the same as described in the detailed description section of the present specification.
Abstract:
An organic light-emitting display system and a method of manufacturing the same are disclosed. In one aspect, the organic light-emitting display system includes a substrate, a display unit that defines an active area on the substrate and includes a plurality of thin film transistor (TFTs), and an encapsulation layer that seals the display unit and has a stacked structure in which at least a first inorganic film, a first organic film, and a second inorganic film are sequentially stacked. The TFTs includes an active layer, a gate electrode, a source electrode, a drain electrode, and an interlayer insulating film that is disposed between the gate electrode and the source electrode and between the gate electrode and the drain electrode, wherein the second inorganic film directly contacts the interlayer insulating film outside the active area. Accordingly, in various embodiments, since an inorganic layer of a thin film encapsulation layer is prevented from being cracked, penetration of external moisture or oxygen into the active area of the display can be reduced or prevents.
Abstract:
A polymer compound has a repeating unit represented by Formula 1 and an organic light-emitting display device including the polymer compound. wherein R1, R2, R3, R4, R5, R6, R7, R8, p, a, b, and c are the same as described in the detailed description section of the present specification.
Abstract:
An organic light-emitting display system and a method of manufacturing the same are disclosed. In one aspect, the organic light-emitting display system includes a substrate, a display unit that defines an active area on the substrate and includes a plurality of thin film transistor (TFTs), and an encapsulation layer that seals the display unit and has a stacked structure in which at least a first inorganic film, a first organic film, and a second inorganic film are sequentially stacked. The TFTs includes an active layer, a gate electrode, a source electrode, a drain electrode, and an interlayer insulating film that is disposed between the gate electrode and the source electrode and between the gate electrode and the drain electrode, wherein the second inorganic film directly contacts the interlayer insulating film outside the active area. Accordingly, in various embodiments, since an inorganic layer of a thin film encapsulation layer is prevented from being cracked, penetration of external moisture or oxygen into the active area of the display can be reduced or prevents.
Abstract:
An organic light-emitting display system and a method of manufacturing the same are disclosed. In one aspect, the organic light-emitting display system includes a substrate, a display unit that defines an active area on the substrate and includes a plurality of thin film transistor (TFTs), and an encapsulation layer that seals the display unit and has a stacked structure in which at least a first inorganic film, a first organic film, and a second inorganic film are sequentially stacked. The TFTs includes an active layer, a gate electrode, a source electrode, a drain electrode, and an interlayer insulating film that is disposed between the gate electrode and the source electrode and between the gate electrode and the drain electrode, wherein the second inorganic film directly contacts the interlayer insulating film outside the active area. Accordingly, in various embodiments, since an inorganic layer of a thin film encapsulation layer is prevented from being cracked, penetration of external moisture or oxygen into the active area of the display can be reduced or prevents.