Abstract:
There is provided a current measurement sensor including: a rogowski coil having a winding coil disposed on an outer circumference part of a coaxial coil; a body case to which one end and the other end of the rogowski coil are coupled, so that the rogowski coil forms a loop; and a coupling member coupling the rogowski coil to the body case, wherein the coupling member includes: a coil coupling member having one side coupled to the rogowski coil and the other side coupled to the body case, and a case coupling member coupled to the body case and covering a coupling part between the coil coupling member and the body case.
Abstract:
Disclosed herein is a system and method for controlling electroplating, the method including: measuring current applied to an object to be plated at the time of electroplating, by a current sensor; receiving current data corresponding to the current applied to the object to be plated at the time of electroplating to execute necessary processing, and transmitting the processed current data to the HMI, by the measurement system; receiving the current data from the measurement system to execute necessary processing, and transmitting the processed data to the PLC, by the HMI; receiving the data from the HMI and storing the data in a memory, and then comparing and computing the stored current measurement value and a set current value, to control an output of the rectifier, by the PLC; and controlling the current supplied to the electroplating bath according to the control of the PLC, by the rectifier.
Abstract:
A surface acoustic wave device includes: a piezoelectric substrate; an interdigital transducer disposed on the piezoelectric substrate, the interdigital transducer being configured to transduce a driving signal into a surface acoustic wave, and transduce a reflected surface acoustic wave into a response signal; a reflector arranged on the piezoelectric substrate and configured to reflect the surface acoustic wave input from the interdigital transducer; a first antenna disposed on the piezoelectric substrate, the first antenna extending radially from the interdigital transducer, and the first antenna being configured to receive the driving signal and transmit the response signal; and a second antenna disposed on the piezoelectric substrate, the second antenna extending radially from the interdigital transducer to be asymmetrical with respect to the first antenna, and the second antenna being configured to receive the driving signal and transmit the response signal.