Abstract:
A system for extraction of optical properties of a turbid medium by using diffuse reflectometry may include at least one light source, an optical receiver, at least one separator, and at least one processor configured to control the optical receiver, while the radiation is provided to the turbid medium in the radiation input area of the at least one light source, to sequentially open each LC cell from the array of LC cells, and simultaneously receive radiation, passed through the sequentially opened LC cells and corresponding microlenses, by corresponding photodetectors from the array of photodetectors to obtain the distribution of radiation intensity; and extract the optical properties of the turbid medium based on the distribution of radiation intensity.
Abstract:
An apparatus for and a method of measuring blood pressure are provided. The apparatus includes a sensor configured to radiate light to a body part, and detect a light signal that is changed due to the body part. The apparatus further includes a signal processor configured to determine a bio signal based on the light signal; and a central processing unit configured to determine a blood pressure based on the bio signal and a blood pressure estimation algorithm.
Abstract:
A system for extraction of optical properties of a turbid medium by using diffuse reflectometry may include at least one light source, an optical receiver, at least one separator, and at least one processor configured to control the optical receiver, while the radiation is provided to the turbid medium in the radiation input area of the at least one light source, to sequentially open each LC cell from the array of LC cells, and simultaneously receive radiation, passed through the sequentially opened LC cells and corresponding microlenses, by corresponding photodetectors from the array of photodetectors to obtain the distribution of radiation intensity; and extract the optical properties of the turbid medium based on the distribution of radiation intensity.
Abstract:
Physiological parameter detecting apparatuses and methods of detecting the physiological parameters are provided. A physiological parameter detecting apparatus includes: a light source configured to emit a light onto a region of an object; an optical path converter configured to receive the light returning from the object and convert an optical path of the received light; an optical detector configured to detect the light that has the converted optical path; and a controller configured to extract physiological information of the object from the detected light.
Abstract:
A biometrics authentication apparatus and a biometrics authentication method are disclosed. The biometrics authentication apparatus includes: a light source configured to emit a light; a modulator configured to change a spatial distribution of the light that is scattered and reflected from a region of interest of a user; a detector configured to detect an integral power of the light that is scattered from the region of interest; and a processor configured to obtain a measurement signal based on the integral power of the light, compare the measurement signal with a reference signal stored in a memory, and determine whether to authenticate the user based on a degree of match between the measurement signal and the reference signal.
Abstract:
Provided is an optical source apparatus that may generate two different optical frequency combs. The optical source apparatus includes an optical resonator and a continuous wave laser emitting laser light having a spectrum component corresponding to a resonance frequency of the optical resonator, and the optical resonator is configured to generate a first frequency comb and a second frequency comb having different modes by interacting with the laser light emitted by the continuous wave laser.
Abstract:
The laser speckle interferometric system includes a memory for storing a measurement result of a correction parameter and models for matching a result of processing the speckle pattern to the parameters of the object and a processor for stabilizing the speckle pattern detected by controlling a condition for detecting the speckle pattern in real time, processing a time-varying function representing a temporal change in the speckle pattern based on the speckle pattern and the parameters and generating data indicating tested parameters.
Abstract:
Provided are a method and device for measuring a critical dimension of a nanostructure. The method includes acquiring a reference intensity distribution, in each of a number of spectral bands, of light scattered by at least one reference nanostructure, for each of a number at different positions of the at least one reference nano structure disposed along an optical axis; generating a library of reference intensity distribution arrays based on a number of the reference intensity distributions, determining an intensity distribution of light scattered by a nanostructure under investigation, for each of the number of spectral bands, at each of the number of different positions of the nanostructure under investigation disposed along the optical axis; generating an intensity distribution array by using the determined intensity distributions, and determining information about a critical dimension of the nanostructure under investigation by comparing the intensity distribution array with the library of reference intensity distribution arrays.
Abstract:
Optical measuring systems for measuring geometrical parameters of nano-objects and methods of measuring a critical size (CS) are provided. The optical method of measuring the CS includes selecting parameters of an optic scheme and an illumination condition; recording a set of nanostructure images corresponding to various wavelengths with various defocusing levels of scattered radiation; calculating a plurality of sets of images of a nanostructure with various defocusing levels, corresponding to various wavelengths of the scattered radiation with CS values within a known range; and comparing a set of measured images of the nanostructure with the sets of the calculated images and determining a best approximate value of the CS values.