Abstract:
A video processing method includes generating a first down-sampled block by down-sampling a first block included in a first frame; generating a plurality of second down-sampled blocks by down-sampling a second block included in a second frame; selecting one of the plurality of second down-sampled blocks by comparing the first down-sampled block and each of the plurality of second down-sampled blocks; and determining, based on the first down-sampled block and the one selected second down-sampled block, a motion vector whereby the second block points to the first block, wherein the plurality of second down-sampled blocks are generated using down-sampling methods that are different from each other with respect to samples of the second block.
Abstract:
Disclosed is a display apparatus including: a signal receiver configured to receive an image signal; a display configured to display an image; a processor configured to: calculate a change degree and a change direction of pixel value differences between at least one first pixel and two or more second pixels of an image, and change a pixel value of the first pixel based on the pixel value difference which is relatively small among the pixel value differences obtained by the calculated change degree and the calculated change direction.According to this, it is possible to enhance the image details without generating or and increasing of the noises.
Abstract:
A frame rate conversion apparatus includes a memory to store a plurality of frames forming an input image, the plurality of frames including a current frame which includes a plurality of areas; and a processor configured to generate an interpolation frame by performing, with respect to an object area, an interpolation which is different from the interpolation applied to other areas, of the plurality of areas, the object area being an area which includes an object and in which at least one among a size, a speed, and a shape of the object satisfies a certain condition, and to insert the interpolation frame between the current frame and an adjacent frame.
Abstract:
A motion vector estimation method of a motion vector estimation apparatus are provided. The motion vector estimation method of the motion vector estimation apparatus includes: determining a motion vector of a current block by setting, in another frame, a local search area for searching a plurality of reference pixel blocks corresponding to the current block which is one of pixel blocks in a single frame; and finally determining one of the determined motion vector and a previous motion vector referred to in order to determine the local search area as a motion vector of the current block, based on sum of absolution difference (SAD) values of the reference pixel blocks included in the local search area.
Abstract:
A hierarchical motion prediction apparatus and method. The hierarchical motion prediction method splits a current frame and a reference frame into pixel groups, changes a pixel location of each pixel group, and selects one pixel, and thus resolutions of the current frame and reference frame are reduced. A motion vector of a down-sampled current block is obtained based on a down-sampled current frame and reference frame, and is expanded to a motion vector of an original resolution based on a down sampling rate.
Abstract:
A display apparatus is provided. The display apparatus includes an input interface, a first storage, a display, and a processor. Pixel values corresponding to a predetermined number of lines in an image input through the input interface are stored in the first storage. The processor acquires a first patch of a predetermined size by sampling a number of pixel values located in an outer region of a matrix centering about a specific pixel value from among the pixel values stored in the first storage, acquires a high-frequency component for the specific pixel value based on the acquired first patch, and processes the input image based on the high-frequency component. The display displays the processed image.
Abstract:
A display apparatus is provided. The display apparatus includes an input interface, a first storage, a display, and a processor. Pixel values corresponding to a predetermined number of lines in an image input through the input interface are stored in the first storage. The processor acquires a first patch of a predetermined size by sampling a number of pixel values located in an outer region of a matrix centering about a specific pixel value from among the pixel values stored in the first storage, acquires a high-frequency component for the specific pixel value based on the acquired first patch, and processes the input image based on the high-frequency component. The display displays the processed image.
Abstract:
A display apparatus and a method of processing an image thereof are provided. The method includes identifying at least one area of an input image by analyzing a dynamic range of the input image, obtaining at least one mapping function based on dynamic range information and brightness information of the at least one area and dynamic range information of the display apparatus, obtaining at least one virtual image where the dynamic range of the input image is converted using the at least one mapping function, synthesizing the at least one virtual image and the input image, and outputting the synthesized image.
Abstract:
A frame rate conversion apparatus is provided. The frame rate conversion apparatus includes at least one processor configured to determine a noise strength of a block of a current frame among a plurality of frames forming an input video, generate a block of an interpolation frame corresponding to the block of the current frame by estimating a motion vector of a block of the interpolation frame based on the noise strength, and insert the interpolation frame between the current frame and an adjacent frame to adjust a frame rate of the input video.