Abstract:
A motion vector estimation method of a motion vector estimation apparatus are provided. The motion vector estimation method of the motion vector estimation apparatus includes: determining a motion vector of a current block by setting, in another frame, a local search area for searching a plurality of reference pixel blocks corresponding to the current block which is one of pixel blocks in a single frame; and finally determining one of the determined motion vector and a previous motion vector referred to in order to determine the local search area as a motion vector of the current block, based on sum of absolution difference (SAD) values of the reference pixel blocks included in the local search area.
Abstract:
A hierarchical motion prediction apparatus and method. The hierarchical motion prediction method splits a current frame and a reference frame into pixel groups, changes a pixel location of each pixel group, and selects one pixel, and thus resolutions of the current frame and reference frame are reduced. A motion vector of a down-sampled current block is obtained based on a down-sampled current frame and reference frame, and is expanded to a motion vector of an original resolution based on a down sampling rate.
Abstract:
Disclosed is a display apparatus including: a signal receiver configured to receive an image signal; a display configured to display an image; a processor configured to: calculate a change degree and a change direction of pixel value differences between at least one first pixel and two or more second pixels of an image, and change a pixel value of the first pixel based on the pixel value difference which is relatively small among the pixel value differences obtained by the calculated change degree and the calculated change direction.According to this, it is possible to enhance the image details without generating or and increasing of the noises.
Abstract:
An image processing apparatus includes: a signal receiver configured to receive an input image; an image processor configured to process the input image and generate an output image; a storage configured to store a first patch corresponding to a first pixel of the input image; and a controller configured to control the image processor to generate the output image by applying the first patch stored in the storage to the first pixel.
Abstract:
An image frame interpolation apparatus includes a motion vector generator configured to generate a motion vector based on a first image frame and a second image frame; a motion scaler configured to scale the motion vector to thereby generate a scaled motion vector; and a motion compensator including an internal memory, the motion compensator being configured to perform motion compensation based on the scaled motion vector and generate an interpolation frame using the internal memory, the motion scaler being configured to scale the motion vector based on a size of the motion vector and a size of the internal memory.
Abstract:
Disclosed is a motion vector smoothing method. The motion vector smoothing method includes acquiring motion vectors of at least one block of a current image by using a reference image, acquiring a candidate motion vector of a current block, based on a motion vector of the current block, and at least one motion vector of at least one block adjacent to the current block, determining a threshold value of the current block according to gradient values of pixels included in the current block, and determining the motion vector of the current block according to the threshold value.
Abstract:
A display apparatus is provided. The display apparatus includes an input interface, a first storage, a display, and a processor. Pixel values corresponding to a predetermined number of lines in an image input through the input interface are stored in the first storage. The processor acquires a first patch of a predetermined size by sampling a number of pixel values located in an outer region of a matrix centering about a specific pixel value from among the pixel values stored in the first storage, acquires a high-frequency component for the specific pixel value based on the acquired first patch, and processes the input image based on the high-frequency component. The display displays the processed image.
Abstract:
An electronic apparatus is provided. The electronic apparatus includes: a storage configured to store a plurality of filters each corresponding to a plurality of image patterns; and a processor configured to classify an image block including a target pixel and a plurality of surrounding pixels into one of the plurality of image patterns based on a relationship between pixels within the image block and to obtain a final image block in which the target pixel is image-processed by applying at least one filter corresponding to the classified image pattern from among the plurality of filters to the image block, wherein the plurality of filters are obtained by learning, through an artificial intelligence algorithm, a relationship between a plurality of first sample image blocks and a plurality of second sample image blocks corresponding to the plurality of first sample image blocks based on each of the plurality of image patterns.
Abstract:
A display apparatus is provided. The display apparatus includes an input interface, a first storage, a display, and a processor. Pixel values corresponding to a predetermined number of lines in an image input through the input interface are stored in the first storage. The processor acquires a first patch of a predetermined size by sampling a number of pixel values located in an outer region of a matrix centering about a specific pixel value from among the pixel values stored in the first storage, acquires a high-frequency component for the specific pixel value based on the acquired first patch, and processes the input image based on the high-frequency component. The display displays the processed image.
Abstract:
A display apparatus and a method of processing an image thereof are provided. The method includes identifying at least one area of an input image by analyzing a dynamic range of the input image, obtaining at least one mapping function based on dynamic range information and brightness information of the at least one area and dynamic range information of the display apparatus, obtaining at least one virtual image where the dynamic range of the input image is converted using the at least one mapping function, synthesizing the at least one virtual image and the input image, and outputting the synthesized image.