Abstract:
A method of monitoring a rock drilling and a rock drilling device includes generating a stress wave, which propagates in a tool of the rock drilling device, measuring the stress wave propagating in the tool and measuring a drilling parameter indicating a drilling penetration rate. The method further includes identifying, from the measured stress wave propagating in the tool, at least one of a compressive stress wave and a tensile stress wave of a reflected stress wave reflected from a rock to be drilled back to the tool, determining at least one property of the at least one of the compressive stress wave and the tensile stress wave of the reflected stress wave, detecting, on the basis of a change in the at least one property of the at least one of the compressive stress wave and the tensile stress wave, that the tool is approaching the cavity.
Abstract:
The disclosure relates to a mining vehicle and a method of moving a boom of a mining vehicle. The boom is provided with several boom joints and there is a mining work device at a distal end of the boom. One or more boom joint positions are determined and stored in a memory medium. A control unit of the mining vehicle may automatically move the boom to a predetermined transport position.
Abstract:
A rock drilling apparatus and method for controlling the orientation of a feed beam of a rock drilling apparatus including a carrier, a drilling boom attached at a first end to the carrier, a feed beam attached turnably to a second end of the drilling boom, a drilling unit attached movably along the feed beam, and a support attached to the feed beam for supporting the drilling boom on the ground. The orientation of the boom and feed beam are adjusted to compensate for the orientation change caused by driving the support onto the ground.