Abstract:
Power is provided to an electrochemical cell. The electrochemical cell includes an anode side and a cathode side. Hydrogen sulfide in a liquid state is flowed to the anode side. Providing power to the electrochemical cell facilitates electrolysis of the hydrogen sulfide to produce sulfur and protons on the anode side. Providing power to the electrochemical cell facilitates reduction of protons to produce hydrogen on the cathode side. A membrane separating the anode side from the cathode side prevents flow of hydrogen sulfide and sulfur from passing through the membrane while allowing hydrogen cations to pass through the membrane. Sulfur is flowed out of the anode side. Hydrogen is flowed out of the cathode side.
Abstract:
A method and a system for using flow cell batteries with mixed Fe/V electrolytes are provided. An exemplary method includes flowing an anolyte through a first channel in an electrochemical cell, wherein the first channel is formed in the space between an anode current collector and an ion exchange membrane. A catholyte is flowed through a second channel in the electrochemical cell, wherein the second channel is formed in the space between a cathode current collector and the ion exchange membrane, wherein the first channel and the second channel are separated by an ion exchange membrane, and wherein the catholyte includes a mixed electrolyte including both iron and vanadium ions. Ions are flowed through the ion exchange membrane to oxidize the anolyte and reduce the catholyte. An electric current is generated between the anode current collector and the cathode current collector.
Abstract:
Embodiments of this disclosure are directed to a parking indicator comprising a vehicle contact body, a pivoting contact body support, an elongated visibility indicator, an indicator actuating mechanism, and an indicator retracting mechanism. The pivoting contact body support is attached to the vehicle contact body and is configured to permit the vehicle contact body to pivot to a horizontally-oriented position when the vehicle contact body is grounded via the pivoting contact body support and is contacted by a vehicle entering a parking space occupied by the parking indicator. The elongated visibility indicator is mechanically coupled to the vehicle contact body via the indicator actuating mechanism such that the indicator actuating mechanism upholds the elongated visibility indicator in an extended position. The indicator retracting mechanism is configured to retract the elongated visibility indicator to a retracted position when the vehicle contact body pivots from the vertically-oriented position to the horizontally-oriented position.
Abstract:
A method of diffusing CO2 within a concrete mixture that includes mixing a non-recycled aggregate material with a CO2 gas in a pretreatment chamber of a concrete preparation system to form a CO2 adsorbed aggregate material, transferring the CO2 adsorbed aggregate material from the pretreatment chamber into a cement mixing chamber of the concrete preparation system, and mixing the CO2 adsorbed aggregate material with cement and water to form the concrete mixture, where mixing the CO2 adsorbed aggregate material with cement and water releases CO2 from the CO2 adsorbed aggregate material and diffuses CO2 into the concrete mixture to form a carbonated concrete mixture.
Abstract:
According to one embodiment of the present disclosure, a redox flow battery is provided comprising an ionically conductive separator, a working side flowing electrolyte, a working electrode in ionic contact with the working side of the ionically conductive separator and the working side flowing electrolyte, a counter electrode, and an auxiliary electrode peripherally circumscribed by the working electrode in a common layer of the flow battery. The auxiliary electrode is in ionic contact with the working electrode, an electrically insulating peripheral gap separates the auxiliary electrode from the working electrode. A working electrode terminal is conductively coupled to the working electrode, an auxiliary electrode terminal is conductively coupled to the auxiliary electrode, and a counter electrode terminal is conductively coupled to the counter electrode. An auxiliary power source is configured to establish an auxiliary circuit voltage differential between the counter electrode terminal and the auxiliary electrode terminal, control an auxiliary electrode voltage such that the auxiliary electrode voltage is within an electrochemical window of the working side flowing electrolyte, and establish a voltage differential between the working electrode terminal and the auxiliary electrode terminal. A method of operation of the redox flow battery is further provided.
Abstract:
Embodiments of this disclosure are directed to a parking indicator comprising a vehicle contact body, a pivoting contact body support, an elongated visibility indicator, an indicator actuating mechanism, and an indicator retracting mechanism. The pivoting contact body support is attached to the vehicle contact body and is configured to permit the vehicle contact body to pivot to a horizontally-oriented position when the vehicle contact body is grounded via the pivoting contact body support and is contacted by a vehicle entering a parking space occupied by the parking indicator. The elongated visibility indicator is mechanically coupled to the vehicle contact body via the indicator actuating mechanism such that the indicator actuating mechanism upholds the elongated visibility indicator in an extended position. The indicator retracting mechanism is configured to retract the elongated visibility indicator to a retracted position when the vehicle contact body pivots from the vertically-oriented position to the horizontally-oriented position.
Abstract:
Embodiments of a method of removing carbonaceous deposits in a liquid-hydrocarbon fueled solid oxide fuel cell and related system are provided. The method includes providing a solid oxide fuel cell system having an anode, a cathode, a solid oxide electrolyte oriented between the anode and cathode, an amplifier cathode disposed proximate the solid oxide electrolyte and the cathode, a fuel cell electric circuit electrically connecting the anode and the cathode, and an amplifier electric circuit electrically connecting the anode and the amplifier cathode. Further, operating the amplifier electric circuit in an electrolytic mode to electrically power the amplifier cathode, wherein the amplifier cathode generates and supplies O2− or CO32− to the anode. The method further includes removing the carbonaceous deposits on the anode by converting the carbonaceous deposits to carbon dioxide gas via reaction with the O2− or CO32− and expelling the carbon dioxide gas.
Abstract:
A process for converting carbon dioxide to hydrocarbon fuels using solar energy harnessed with a solar thermal power system to create thermal energy and electricity, using the thermal energy to heat a fuel feed stream, the heated fuel feed stream comprising carbon dioxide and water, the carbon dioxide captured from a flue gas stream, converting the carbon dioxide and water in a syngas production cell, the syngas production cell comprising a solid oxide electrolyte, to create carbon monoxide and hydrogen, and converting the carbon monoxide and hydrogen to hydrocarbon fuels in a catalytic reactor. In at least one embodiment, the syngas production cell is a solid oxide fuel cell. In at least one embodiment, the syngas production cell is a solid oxide electrolyzer cell.
Abstract:
Power is provided to an electrochemical cell. The electrochemical cell includes an anode side and a cathode side. Hydrogen sulfide in a liquid state is flowed to the anode side. An operating temperature and an operating pressure are maintained within the anode side, such that the hydrogen sulfide in the anode side is at a supercritical state. Providing power to the electrochemical cell facilitates electrolysis of the hydrogen sulfide to produce sulfur and protons on the anode side. Providing power to the electrochemical cell facilitates reduction of protons to produce hydrogen on the cathode side. A membrane separating the anode side from the cathode side prevents flow of hydrogen sulfide and sulfur from passing through the membrane while allowing hydrogen cations to pass through the membrane. Sulfur is flowed out of the anode side. Hydrogen is flowed out of the cathode side.
Abstract:
Power is provided to an electrochemical cell. The electrochemical cell includes an anode side and a cathode side. A solution is flowed to the anode side. The solution includes hydrogen sulfide dissolved in water. Water is flowed to the cathode side. The water flowed to the cathode side can be in the form of steam. Providing power to the electrochemical cell facilitates production of sulfur dioxide on the anode side. Providing power to the electrochemical cell facilitates production of hydrogen on the cathode side. A membrane separating the anode side from the cathode side prevents flow of hydrogen sulfide, water, and sulfur dioxide from passing through the membrane while allowing hydrogen cations and oxygen anions to pass through the membrane. Sulfur dioxide is flowed out of the anode side. Hydrogen is flowed out of the cathode side.