Abstract:
An intelligent completion module includes a flowmeter that uses one or more electromagnetic acoustic transducer (EMAT) sensors and a flow control valve. The flow rate and the speed of sound in the production fluid from a production zone is measured and used to make reservoir management decisions. The flowmeter includes at least two EMAT rings, including one or more EMAT sensors in a circular distribution which can be used in propagation or pulse-echo modes. In a segregated flow regime, a single EMAT sensor in pulse-echo mode is used to measure holdups of fluid components.
Abstract:
An x-ray imaging device for imaging a borehole environment employs a housing that encloses an x-ray generator spaced from an x-ray detector which cooperate to obtain an image of the borehole environment.
Abstract:
An intelligent completion module comprises a flowmeter that uses one or more electromagnetic acoustic transducer (EMAT) sensors and a flow control valve. The flow rate and the speed of sound in the production fluid from a production zone is measured and used to make reservoir management decisions. The flowmeter comprises at least two EMAT rings, comprising one or more EMAT sensors in a circular distribution which can be used in propagation or pulse-echo modes. In a segregated flow regime, a single EMAT sensor in pulse-echo mode is used to measure holdups of fluid components.
Abstract:
An x-ray imaging device for imaging a borehole environment employs a housing that encloses an x-ray generator spaced from an x-ray detector which cooperate to obtain an image of the borehole environment.
Abstract:
A neutron imaging device employs a neutron source including a sealed enclosure, gamma ray detector(s) spaced from the neutron source, and particle detector(s) disposed in the sealed enclosure of the neutron source. The output of the particle detector(s) can be used to obtain a direction of particles generated by the neutron source and corresponding directions of neutrons generated by the neutron source. Such information can be processed to determine locations in the surrounding borehole environment where the secondary gamma rays are generated and determine data representing formation density at such locations. In one aspect, the gamma ray detector(s) of the neutron imaging device can include at least one scintillation crystal with shielding disposed proximate opposite ends of the scintillation crystal. In another aspect, the particle detector(s) of the neutron imaging device can include a resistive anode encoder having a ceramic substrate and resistive glaze.
Abstract:
A neutron imaging device employs a neutron source including a sealed enclosure, gamma ray detector(s) spaced from the neutron source, and particle detector(s) disposed in the sealed enclosure of the neutron source. The output of the particle detector(s) can be used to obtain a direction of particles generated by the neutron source and corresponding directions of neutrons generated by the neutron source. Such information can be processed to determine locations in the surrounding borehole environment where the secondary gamma rays are generated and determine data representing formation density at such locations. In one aspect, the gamma ray detector(s) of the neutron imaging device can include at least one scintillation crystal with shielding disposed proximate opposite ends of the scintillation crystal. In another aspect, the particle detector(s) of the neutron imaging device can include a resistive anode encoder having a ceramic substrate and resistive glaze.
Abstract:
Methods may include emplacing a resistivity logging tool in a borehole; stimulating an interval of the formation in the borehole; obtaining at least one resistivity log of the interval of the formation, wherein the resistivity log comprises a survey of one or more depths into the formation; determining a radial invasion of the stimulating fluid into the interval of the formation; and inverting the radial invasion to obtain an input and entering the input into an effective medium model; solving the effective medium model and generating an effective wormhole radius profile and thickness for the interval of the formation.
Abstract:
An intelligent completion module includes a flowmeter that uses one or more electromagnetic acoustic transducer (EMAT) sensors and a flow control valve. The flow rate and the speed of sound in the production fluid from a production zone is measured and used to make reservoir management decisions. The flowmeter includes at least two EMAT rings, including one or more EMAT sensors in a circular distribution which can be used in propagation or pulse-echo modes. In a segregated flow regime, a single EMAT sensor in pulse-echo mode is used to measure holdups of fluid components.
Abstract:
Methods may include emplacing a resistivity logging tool in a borehole; stimulating an interval of the formation in the borehole; obtaining at least one resistivity log of the interval of the formation, wherein the resistivity log comprises a survey of one or more depths into the formation; determining a radial invasion of the stimulating fluid into the interval of the formation; and inverting the radial invasion to obtain an input and entering the input into an effective medium model; solving the effective medium model and generating an effective wormhole radius profile and thickness for the interval of the formation.
Abstract:
An ion source for use in a particle accelerator includes at least one cathode. The at least one cathode has an array of nano-sized projections and an array of gates adjacent the array of nano-sized projections. The array of nano-sized projections and the array of gates have a first voltage difference such that an electric field in the cathode causes electrons to be emitted from the array of nano-sized projections and accelerated downstream. There is a ion source electrode downstream of the at least one cathode, and the at least one cathode and the ion source electrode have the same voltage applied such that the electrons enter the space encompassed by the ion source electrode, some of the electrons as they travel within the ion source electrode striking an ionizable gas to create ions.