Model based inversion of acoustic impedance of annulus behind casing

    公开(公告)号:US09829597B2

    公开(公告)日:2017-11-28

    申请号:US14887653

    申请日:2015-10-20

    CPC classification number: G01V1/50 E21B47/0005

    Abstract: Techniques involve obtaining acoustic data from an acoustic logging tool, where the acoustic data includes waves reflected from the casing, the annular fill material, the formation, and/or interfaces between any of the casing, the annular fill material, and the formation. A crude casing thickness, tool position (e.g., eccentering), mud sound velocity may be estimated using the acoustic data. A specular reflection signal may also be estimated based on the acoustic data. A modeled waveform may be generated using the estimated specular reflection signal and one or more model parameters, such as an estimated crude casing thickness, an estimated tool position, an estimated sound velocity of mud between the acoustic logging tool and the casing, an estimated impedance of the annular fill material, and an estimated impedance of the mud. The modeled waveform may be calibrated in some embodiments. Furthermore, a casing thickness may be estimated by matching the modeled waveform with the corresponding measured acoustic data. The techniques may output one or more of a thickness of the casing, an apparent impedance of the annular fill material, and the impedance of mud.

    ACOUSTIC MULTI-MODALITY INVERSION FOR CEMENT INTEGRITY ANALYSIS
    3.
    发明申请
    ACOUSTIC MULTI-MODALITY INVERSION FOR CEMENT INTEGRITY ANALYSIS 审中-公开
    用于水泥整体分析的声学多模态反演

    公开(公告)号:US20150219780A1

    公开(公告)日:2015-08-06

    申请号:US14170427

    申请日:2014-01-31

    CPC classification number: E21B49/003 E21B47/0005 E21B47/14 G01V1/50

    Abstract: Apparatus and method for characterizing a barrier installed in a borehole traversing a formation including locating an acoustic tool with a receiver and a transmitter at a location in the borehole, activating the acoustic tool to form acoustic waveforms, wherein the receiver records the acoustic waveforms, and processing the waveforms to identify barrier parameters as a function of azimuth and depth along the borehole, wherein the waveforms comprise at least two of sonic signals, ultrasonic pulse-echo signals, and ultrasonic pitch-catch signals.

    Abstract translation: 用于表征安装在穿过地层的井眼中的屏障的装置和方法,包括在井眼中的位置处定位具有接收器和发射器的声学工具,激活声学工具以形成声波形,其中接收器记录声波形,以及 处理波形以识别作为沿着钻孔的方位角和深度的函数的屏障参数,其中波形包括声音信号,超声波脉冲回波信号和超声俯仰捕获信号中的至少两个。

    Systems and Methods for Identifying Sanding in Production Wells Using Time-Lapse Sonic Data
    5.
    发明申请
    Systems and Methods for Identifying Sanding in Production Wells Using Time-Lapse Sonic Data 有权
    使用时间延迟声波数据识别生产井中的砂光的系统和方法

    公开(公告)号:US20150029823A1

    公开(公告)日:2015-01-29

    申请号:US13949202

    申请日:2013-07-23

    Abstract: Systems and methods for identifying sanding in production wells using time-lapse sonic data. Formation anisotropy can be characterized in terms of shear moduli in a vertical wellbore, e.g., vertical shear moduli C44 and C55 in the wellbore axial planes and horizontal shear modulus C66 in the wellbore cross-sectional plane. Changes in formation anisotropy between different times can provide qualitative indicators of the occurrence of sanding in the production well. Before production begins, the horizontal shear modulus C66 is typically less than the vertical shear modulus C44 or C55 or both. At a subsequent time after sanding occurs, the horizontal shear modulus C66 is typically greater than the vertical shear modulus C44 or C55 or both. By comparing the shear moduli of the vertical wellbore at different times, it is possible to identify the occurrence of sanding in the production well using time-lapse sonic data.

    Abstract translation: 使用延时声波数据识别生产井中的砂光的系统和方法。 形成各向异性可以用垂直井筒中的剪切模量来表征,例如井筒轴向平面中的垂直剪切模量C44和C55以及井筒横截面中的水平剪切模量C66。 不同时期地层各向异性的变化可以为生产井中砂磨发生提供定性指标。 在生产开始之前,水平剪切模量C66通常小于垂直剪切模量C44或C55或两者。 在砂光发生后的随后时间,水平剪切模量C66通常大于垂直剪切模量C44或C55或两者。 通过比较不同时间垂直井筒的剪切模量,可以使用延时声波数据来识别生产井中砂磨的发生。

    Torsional wave logging
    6.
    发明授权

    公开(公告)号:US10393905B2

    公开(公告)日:2019-08-27

    申请号:US15238524

    申请日:2016-08-16

    Abstract: A method for torsional wave logging in a borehole of a subterranean formation. The method includes obtaining a torsional wave measurement of the borehole, wherein the torsional wave measurement represents characteristics of a torsional wave propagating within a cylindrical layered structure associated with the borehole, wherein the cylindrical layered structure comprises the subterranean formation and a completion of the borehole, analyzing, by a computer processor, the torsional wave measurement to generate a quality measure of the completion, and displaying the quality measure of the completion.

    Fast model based inversion of acoustic impedance of annulus behind casing

    公开(公告)号:US10012749B2

    公开(公告)日:2018-07-03

    申请号:US14887746

    申请日:2015-10-20

    CPC classification number: G01V1/50 E21B47/0005 G01V1/306

    Abstract: Techniques involve obtaining acoustic data from an acoustic logging tool, where the acoustic data includes waves reflected from the casing, the annular fill material, the formation, and/or interfaces between any of the casing, the annular fill material, and the formation. A crude casing thickness, tool position (e.g., eccentering), mud sound velocity may be estimated using the acoustic data. Techniques also involve computing a model spectra and an estimated casing thickness using a forward model and based on a crude casing thickness, an initial mud acoustic impedance, and an initial annular acoustic impedance, estimating a specular signal using the model spectra and the acoustic data in a first time window, computing a calibrated model signal using the estimated specular signal and computed model spectra, computing a misfit of the computed calibrated model signal and acoustic data in a second time window comprising the initial time window, and computing a correction update to one or more of the estimated casing thickness an estimated apparent annular acoustic impedance and an estimated mud acoustic impedance, based on the misfit. Techniques involve iteratively estimating the model spectra and the Jacobian curve, computing the specular signal, computing the misfit, and computing the update until the update is below a threshold. Outputs may include one or more of a casing thickness, an apparent acoustic impedance of the annular fill material, and the acoustic impedance of mud.

    Torsional wave logging
    8.
    发明授权
    Torsional wave logging 有权
    扭转波测井

    公开(公告)号:US09448321B2

    公开(公告)日:2016-09-20

    申请号:US13734728

    申请日:2013-01-04

    CPC classification number: G01V1/50 E21B47/0005

    Abstract: A method for torsional wave logging in a borehole of a subterranean formation. The method includes obtaining a torsional wave measurement of the borehole, wherein the torsional wave measurement represents characteristics of a torsional wave propagating within a cylindrical layered structure associated with the borehole, wherein the cylindrical layered structure comprises the subterranean formation and a completion of the borehole, analyzing, by a computer processor, the torsional wave measurement to generate a quality measure of the completion, and displaying the quality measure of the completion.

    Abstract translation: 一种地下地层井眼扭转波测井方法。 该方法包括获得钻孔的扭转波测量,其中扭转波测量表示在与钻孔相关联的圆柱形分层结构内传播的扭转波的特征,其中圆柱形分层结构包括地层并完成钻孔, 通过计算机处理器分析扭转波测量以产生完成的质量测量,并且显示完成的质量测量。

    Fast Model Based Inversion of Acoustic Impedance of Annulus Behind Casing
    9.
    发明申请
    Fast Model Based Inversion of Acoustic Impedance of Annulus Behind Casing 有权
    快速模型反演套管背后的环形阻抗

    公开(公告)号:US20160109605A1

    公开(公告)日:2016-04-21

    申请号:US14887746

    申请日:2015-10-20

    CPC classification number: G01V1/50 E21B47/0005 G01V1/306

    Abstract: Techniques involve obtaining acoustic data from an acoustic logging tool, where the acoustic data includes waves reflected from the casing, the annular fill material, the formation, and/or interfaces between any of the casing, the annular fill material, and the formation. A crude casing thickness, tool position (e.g., eccentering), mud sound velocity may be estimated using the acoustic data. Techniques also involve computing a model spectra and an estimated casing thickness using a forward model and based on a crude casing thickness, an initial mud acoustic impedance, and an initial annular acoustic impedance, estimating a specular signal using the model spectra and the acoustic data in a first time window, computing a calibrated model signal using the estimated specular signal and computed model spectra, computing a misfit of the computed calibrated model signal and acoustic data in a second time window comprising the initial time window, and computing a correction update to one or more of the estimated casing thickness an estimated apparent annular acoustic impedance and an estimated mud acoustic impedance, based on the misfit. Techniques involve iteratively estimating the model spectra and the Jacobian curve, computing the specular signal, computing the misfit, and computing the update until the update is below a threshold. Outputs may include one or more of a casing thickness, an apparent acoustic impedance of the annular fill material, and the acoustic impedance of mud.

    Abstract translation: 技术涉及从声学测井工具获得声学数据,其中声学数据包括从壳体反射的波形,环形填充材料,地层和/或任何壳体,环形填充材料和地层之间的接口。 可以使用声学数据来估计粗糙的外壳厚度,工具位置(例如偏心),泥浆声速。 技术还包括使用正向模型并基于粗壳体厚度,初始泥声阻抗和初始环形声阻抗来计算模型光谱和估计的壳体厚度,使用模型光谱和声学数据估计镜面信号 第一时间窗口,使用估计的镜面反射信号和计算的模型光谱计算校准的模型信号,在包括初始时间窗口的第二时间窗中计算所计算的校准模型信号和声学数据的失配,以及计算校正更新到一个 或更多的估计外壳厚度,基于错配估计的表观环形声阻抗和估计的泥声阻抗。 技术包括迭代地估计模型光谱和雅可比曲线,计算镜面信号,计算误差,以及计算更新直到更新低于阈值。 输出可以包括套管厚度,环形填充材料的表观声阻抗和泥浆的声阻抗中的一个或多个。

    Systems and methods for identifying sanding in production wells using time-lapse sonic data
    10.
    发明授权
    Systems and methods for identifying sanding in production wells using time-lapse sonic data 有权
    使用延时声波数据识别生产井中的砂光的系统和方法

    公开(公告)号:US09217807B2

    公开(公告)日:2015-12-22

    申请号:US13949202

    申请日:2013-07-23

    Abstract: Systems and methods for identifying sanding in production wells using time-lapse sonic data. Formation anisotropy can be characterized in terms of shear moduli in a vertical wellbore, e.g., vertical shear moduli C44 and C55 in the wellbore axial planes and horizontal shear modulus C66 in the wellbore cross-sectional plane. Changes in formation anisotropy between different times can provide qualitative indicators of the occurrence of sanding in the production well. Before production begins, the horizontal shear modulus C66 is typically less than the vertical shear modulus C44 or C55 or both. At a subsequent time after sanding occurs, the horizontal shear modulus C66 is typically greater than the vertical shear modulus C44 or C55 or both. By comparing the shear moduli of the vertical wellbore at different times, it is possible to identify the occurrence of sanding in the production well using time-lapse sonic data.

    Abstract translation: 使用延时声波数据识别生产井中的砂光的系统和方法。 形成各向异性可以用垂直井眼中的剪切模量来表征,例如在井眼轴向平面中的垂直剪切模量C44和C55以及井眼横截面中的水平剪切模量C66。 不同时期地层各向异性的变化可以为生产井中砂磨发生提供定性指标。 在生产开始之前,水平剪切模量C66通常小于垂直剪切模量C44或C55或两者。 在砂光发生后的随后时间,水平剪切模量C66通常大于垂直剪切模量C44或C55或两者。 通过比较不同时间垂直井筒的剪切模量,可以使用延时声波数据来识别生产井中砂磨的发生。

Patent Agency Ranking