Abstract:
A technique includes receiving data representing time domain waveforms acquired by receivers of a drilling string-disposed acoustic measurement tool in response to energy emitted by at least one dipole source of the tool. The technique includes processing the data to determine slowness values associated with a plurality of acoustic modes, including a formation flexural acoustic mode and a tool flexural acoustic mode. The technique includes identifying slowness-frequency pairs from the slowness values and determining a shear slowness based at least in part on the identified slowness-frequency pairs.
Abstract:
Maximum and minimum horizontal stresses, and horizontal to overburden stress ratio, are estimated using radial profiles of shear moduli. Inversion enables estimation of maximum and minimum horizontal stresses using radial profiles of three shear moduli associated with an orthogonal set of axes defined by the three principal stress directions. Differences in the far-field shear moduli are inverted together with two difference equations obtained from the radial profiles of the dipole shear moduli C44 and C55, and borehole stresses in the near-wellbore region. The horizontal to overburden stress ratio is estimated using differences in the compressional, dipole shear, and Stoneley shear slownesses at two depths in the same lithology interval where the formation exhibits azimuthal isotropy in cross-dipole dispersions, implying that horizontal stresses are nearly the same at all azimuths. The overburden to horizontal stress ratio in a formation with axial heterogeneity may also be estimated using the far-field Stoneley shear modulus C66 and dipole shear modulus C55 together with the radial variation of the dipole shear modulus C55 caused by near-wellbore stress concentrations.
Abstract:
A method for determining a shear slowness of a subterranean formation includes receiving waveforms data acquired by receivers in an acoustic measurement tool in response to energy emitted by at least one dipole source. The waveforms are processed to extract a formation flexural acoustic mode and a tool flexural acoustic mode. The processing includes transforming the time domain waveforms to frequency domain waveforms, processing the frequency domain waveforms with a Capon algorithm to compute a two-dimensional spectrum over a chosen range of group slowness and phase slowness values; and processing the two-dimensional spectrum to extract the multi-mode slowness dispersion. The method further includes selecting a plurality of slowness-frequency pairs from the formation flexural mode of the extracted multi-mode dispersion wherein each slowness-frequency pair comprises a slowness value at a corresponding frequency and processing the selected slowness frequency pairs to compute the shear slowness of the subterranean formation.
Abstract:
Methods are provided for estimating a quality of cement in the annuli of a multi-string wellbore. Wideband acoustic energy signals are generated and detected in the wellbore and are processed to obtain indications of wideband casing-formation phase slowness dispersions in the wellbore. The indications are compared to reference wideband model casing-formation phase slowness dispersions in order to estimate status of cement or lack of cement in the annuli at that location based on the results of the comparison.
Abstract:
A method includes applying acoustic waves to the formation and detecting acoustic waves to acquire acoustic data. The method further includes determining (i) at least one of elastic constant C13 and elastic constant C23, (ii) elastic constant C33, (iii) at least one of elastic constant C44 and elastic constant C55, and (iv) elastic constant C66 using the acquired acoustic data. Elastic constant C11 is determined using elastic constant C33, at least one of elastic constant C44 and elastic constant C55, elastic constant C66, and a relationship between Thomsen parameter gamma and Thomsen parameter epsilon.
Abstract:
A computer-implemented method is provided for determining properties of a formation traversed by a well or wellbore. A formation model describing formation properties at an interval-of-interest within the well or wellbore is derived from measured sonic data, resistivity data, and density data for the interval-of-interest. The formation model is used as input to a plurality of petrophysical transforms and corresponding tool response simulators that derive simulated sonic data, resistivity data, and density data for the interval-of-interest. The measured sonic data, resistivity data, and density data for the interval-of-interest and the simulated sonic data, resistivity data, and density data for the interval-of-interest are used by an inversion process to refine the formation model and determine properties of the formation at the interval-of-interest. In embodiments, properties of the formation may be radial profiles for porosity, water saturation, gas or oil saturation, or pore aspect ratio.
Abstract:
Apparatus and method for characterizing a barrier installed in a borehole traversing a formation including locating an acoustic tool with a receiver and a transmitter at a location in the borehole, activating the acoustic tool to form acoustic waveforms, wherein the receiver records the acoustic waveforms, and processing the waveforms to identify barrier parameters as a function of azimuth and depth along the borehole, wherein the waveforms comprise at least two of sonic signals, ultrasonic pulse-echo signals, and ultrasonic pitch-catch signals.
Abstract:
A method includes applying acoustic waves to the formation and detecting acoustic waves to acquire acoustic data. The method further includes determining (i) at least one of elastic constant C13 and elastic constant C23, (ii) elastic constant C33, (iii) at least one of elastic constant C44 and elastic constant C55, and (iv) elastic constant C66 using the acquired acoustic data. Elastic constant C11 is determined using elastic constant C33, at least one of elastic constant C44 and elastic constant C55, elastic constant C66, and a relationship between Thomsen parameter gamma and Thomsen parameter epsilon.
Abstract:
Systems and methods for the estimating a plurality of anisotropic elastic constants (Cij) using borehole dispersions and refracted compressional headwave velocity at a single logging depth in a vertical, deviated, or horizontal wellbore in a transversely-isotropic with a vertical axis of symmetry (“TIV”) formation. The estimated elastic constants can then be used to calculate near-wellbore stress distributions in the wellbore, which aids in an optimal completion design, such as for shale-gas production in the presence of shale heterogeneity.
Abstract:
Methods are provided for estimating a quality of cement in the annuli of a multi-string wellbore. Wideband acoustic energy signals are generated and detected in the wellbore and are processed to obtain indications of wideband casing-formation phase slowness dispersions in the wellbore. The indications are compared to reference wideband model casing-formation phase slowness dispersions in order to estimate status of cement or lack of cement in the annuli at that location based on the results of the comparison.