Abstract:
A method for transforming a 2D or 3D earth volume geometry into a 1D earth volume geometry includes performing a measurement using the measurement sensor in a wellbore. A layer boundary in the 2D or 3D earth volume geometry that is nearest to the measurement sensor is identified. A vector from the measurement sensor is generated toward the nearest layer boundary. A first intersection is identified between the vector and the nearest layer boundary, and a second intersection is identified between the vector and another layer boundary. Simulated boundaries that extend through the first and second intersections and are perpendicular to the vector are generated. The 1D earth volume geometry that is bounded by the first and second intersections is identified. A property value is extracted from the 2D or 3D earth volume geometry between the first and second intersections. The property value is assigned to the 1D earth geometry.
Abstract:
Embodiments set forth in this disclosure providing techniques for determining formation parameters, such as horizontal resistivity (Rh), vertical resistivity (Rv), and dip, in high angle and horizontal wells using non-directional resistivity measurements. For example, a method is provided that may include using an electromagnetic logging tool to acquire non-directional resistivity measurements in a wellbore of a high angle or horizontal well. The method may also include defining a processing window that corresponds to a measurement point of the electromagnetic logging tool along a well trajectory that intersects a at least one bed boundary between two layers of a subsurface formation. The method may also include defining a formation structure and defining an initial set of formation parameters for each layer in the formation structure. Furthermore, the method may include inverting the formation parameters for each layer.
Abstract:
A method can include receiving neutron data and density data for a borehole in a geologic formation; determining a migration length value for a layer of the geologic formation based at least in part on the neutron data; forward modeling at least the layer based at least in part on the migration length value and the density data; and outputting, based at least in part on the forward modeling, modeled neutron data for the layer.
Abstract:
Properties of a geological formation, such as vertical resistivity values, horizontal resistivity values, dip, and azimuth may be determined by inverting electromagnetic (EM) well log data based at least in part on an anisotropic formation model and a cost function. The cost function may include a data misfit term, a smoothness term, and an entropy term. In some embodiments, one or more of the data misfit term, the smoothness term, and the entropy term may be represented as functions of vertical conductivity and horizontal conductivity. The cost function may include one or more regularization parameters that are based at least in part on the data misfit term. Further, the cost function may include one or more relaxation factors that are based at least in part on a ratio of the Hessians of the smoothness term and the data misfit term.
Abstract:
Methods, computer-readable media, and systems are disclosed for applying 1D processing in a non-1D formation. In some embodiments, a 3D model or curtain section of a subsurface earth formation may be obtained. A processing window within the 3D model or curtain that is suitable for 1D inversion processing is determined, and a local 1D model for the processing window is built. A 1D inversion is performed on the local 1D model, and inverted formation parameters are used to update the 3D model or curtain section.
Abstract:
A method for automatic interpretation of bulls-eye and sinusoidal features observed in LWD images is disclosed. In some embodiments, the method includes an automatic workflow for extracting smooth contours from images that demarcate boundaries of structural features, followed by projection of the contours to three-dimensional (3D) point clouds in the well coordinate system for structural interpretation. The method may characterize both sinusoidal features and bulls-eye features, taking into account variations of formation dip/azimuth, or well inclination/azimuth, on the topology of a structural feature. The disclosed method may be sufficiently fast for use in real-time analysis and interpretation, or to provide constraints for physics-based data inversion processing.
Abstract:
A method includes receiving information for a subsurface region; based at least in part on the information, identifying sub-regions within the subsurface region; assigning individual identified sub-regions a dimensionality of a plurality of different dimensionalities that correspond to a plurality of different models; via a model-based computational framework, generating at least one result for at least one of the individual identified sub-regions based at least in part on at least one assigned dimensionality; and consolidating the at least one result for multiple sub-regions.
Abstract:
Properties of a geological formation, such as vertical resistivity values, horizontal resistivity values, dip, and azimuth may be determined by inverting electromagnetic (EM) well log data based at least in part on an anisotropic formation model and a cost function. The cost function may include a data misfit term, a smoothness term, and an entropy term. In some embodiments, one or more of the data misfit term, the smoothness term, and the entropy term may be represented as functions of vertical conductivity and horizontal conductivity. The cost function may include one or more regularization parameters that are based at least in part on the data misfit term. Further, the cost function may include one or more relaxation factors that are based at least in part on a ratio of the Hessians of the smoothness term and the data misfit term.
Abstract:
A method includes receiving information for a subsurface region; based at least in part on the information, identifying sub-regions within the subsurface region; assigning individual identified sub-regions a dimensionality of a plurality of different dimensionalities that correspond to a plurality of different models; via a model-based computational framework, generating at least one result for at least one of the individual identified sub-regions based at least in part on at least one assigned dimensionality; and consolidating the at least one result for multiple sub-regions.
Abstract:
Embodiments set forth in this disclosure providing techniques for determining formation parameters, such as horizontal resistivity (Rh), vertical resistivity (Rv), and dip, in high angle and horizontal wells using non-directional resistivity measurements. For example, a method is provided that may include using an electromagnetic logging tool to acquire non-directional resistivity measurements in a wellbore of a high angle or horizontal well. The method may also include defining a processing window that corresponds to a measurement point of the electromagnetic logging tool along a well trajectory that intersects a at least one bed boundary between two layers of a subsurface formation. The method may also include defining a formation structure and defining an initial set of formation parameters for each layer in the formation structure. Furthermore, the method may include inverting the formation parameters for each layer.