Abstract:
A method for generating a model of a formation property includes acquiring a formation property measurement. A petrophysical quantity is inverted from the formation property measurement. A model is generated based on the inverted petrophysical quantity.
Abstract:
Methods, computer-readable media, and systems are disclosed for applying 1D processing in a non-1D formation. In some embodiments, a 3D model or curtain section of a subsurface earth formation may be obtained. A processing window within the 3D model or curtain that is suitable for 1D inversion processing is determined, and a local 1D model for the processing window is built. A 1D inversion is performed on the local 1D model, and inverted formation parameters are used to update the 3D model or curtain section.
Abstract:
A method for transforming a 2D or 3D earth volume geometry into a 1D earth volume geometry includes performing a measurement using the measurement sensor in a wellbore. A layer boundary in the 2D or 3D earth volume geometry that is nearest to the measurement sensor is identified. A vector from the measurement sensor is generated toward the nearest layer boundary. A first intersection is identified between the vector and the nearest layer boundary, and a second intersection is identified between the vector and another layer boundary. Simulated boundaries that extend through the first and second intersections and are perpendicular to the vector are generated. The 1D earth volume geometry that is bounded by the first and second intersections is identified. A property value is extracted from the 2D or 3D earth volume geometry between the first and second intersections. The property value is assigned to the 1D earth geometry.
Abstract:
A method for estimation of water properties and hydrocarbon properties in a subsurface formation include acquiring a plurality of well log measurements from the subsurface formation. The water properties and the formation properties are parameterized with respect to a selected set of well log measurements. The parameterized water properties, the parameterized formation properties and the well log measurements are graphically displayed to estimate the water properties.
Abstract:
A method for determining a volume of a constituent(s) in a geological formation may include generating an equation of state based upon log measurements for the geological formation, with the equation of state providing a correlation between the log measurements, determining a quality factor for the equation of state, and for each of a plurality of different constituents expected to be in the formation, determining a constituent compliance factor for each of the constituents. The method may further include determining an uncertainty for each constituent compliance factor, determining a likelihood that each constituent is present in the formation based upon the quality factor, the constituent compliance factor for the constituent, and the uncertainty for the constituent compliance factor, generating a volumetric model based upon the log measurements and the determined likelihoods of the constituents in the formation, and determining the volume of the constituent(s) based upon the volumetric model.
Abstract:
Embodiments set forth in this disclosure providing techniques for determining formation parameters, such as horizontal resistivity (Rh), vertical resistivity (Rv), and dip, in high angle and horizontal wells using non-directional resistivity measurements. For example, a method is provided that may include using an electromagnetic logging tool to acquire non-directional resistivity measurements in a wellbore of a high angle or horizontal well. The method may also include defining a processing window that corresponds to a measurement point of the electromagnetic logging tool along a well trajectory that intersects a at least one bed boundary between two layers of a subsurface formation. The method may also include defining a formation structure and defining an initial set of formation parameters for each layer in the formation structure. Furthermore, the method may include inverting the formation parameters for each layer.
Abstract:
A method for determining a volume of a constituent(s) in a geological formation may include generating an equation of state based upon log measurements for the geological formation, with the equation of state providing a correlation between the log measurements, determining a quality factor for the equation of state, and for each of a plurality of different constituents expected to be in the formation, determining a constituent compliance factor for each of the constituents. The method may further include determining an uncertainty for each constituent compliance factor, determining a likelihood that each constituent is present in the formation based upon the quality factor, the constituent compliance factor for the constituent, and the uncertainty for the constituent compliance factor, generating a volumetric model based upon the log measurements and the determined likelihoods of the constituents in the formation, and determining the volume of the constituent(s) based upon the volumetric model.
Abstract:
A method for transforming a 2D or 3D earth volume geometry into a 1D earth volume geometry includes performing a measurement using the measurement sensor in a wellbore. A layer boundary in the 2D or 3D earth volume geometry that is nearest to the measurement sensor is identified. A vector from the measurement sensor is generated toward the nearest layer boundary. A first intersection is identified between the vector and the nearest layer boundary, and a second intersection is identified between the vector and another layer boundary. Simulated boundaries that extend through the first and second intersections and are perpendicular to the vector are generated. The 1D earth volume geometry that is bounded by the first and second intersections is identified. A property value is extracted from the 2D or 3D earth volume geometry between the first and second intersections. The property value is assigned to the 1D earth geometry.
Abstract:
Embodiments set forth in this disclosure providing techniques for determining formation parameters, such as horizontal resistivity (Rh), vertical resistivity (Rv), and dip, in high angle and horizontal wells using non-directional resistivity measurements. For example, a method is provided that may include using an electromagnetic logging tool to acquire non-directional resistivity measurements in a wellbore of a high angle or horizontal well. The method may also include defining a processing window that corresponds to a measurement point of the electromagnetic logging tool along a well trajectory that intersects a at least one bed boundary between two layers of a subsurface formation. The method may also include defining a formation structure and defining an initial set of formation parameters for each layer in the formation structure. Furthermore, the method may include inverting the formation parameters for each layer.
Abstract:
Methods, computer-readable media, and systems are disclosed for applying 1D processing in a non-1D formation. In some embodiments, a 3D model or curtain section of a subsurface earth formation may be obtained. A processing window within the 3D model or curtain that is suitable for 1D inversion processing is determined, and a local 1D model for the processing window is built. A 1D inversion is performed on the local 1D model, and inverted formation parameters are used to update the 3D model or curtain section.