Abstract:
A shaped charge includes a cup-shaped casing defining an interior volume; a liner located within the interior volume; an explosive disposed between the liner and the casing; and a reactive material disposed between the liner and the casing. A method for generating a dynamic overbalance inside a wellbore includes disposing a perforation gun in the wellbore; and detonating a shaped charge in the perforation gun, wherein the shaped charge includes a cup-shaped casing defining an interior volume, a liner located within the interior volume, an explosive disposed between the liner and the casing, and a reactive material disposed between the liner and the casing.
Abstract:
A shaped charge includes a charge case; a liner; an explosive retained between the charge case and the liner; and a primer core disposed in a hole in the charge case and in contact with the explosive, wherein at least one of the case, the liner, the primer core, and the explosive comprising a material soluble in a selected fluid. A perforation system includes a perforation gun, comprising a gun housing that includes a safety valve or a firing valve, wherein the safety valve or the firing valve comprises a material soluble in a selected fluid.
Abstract:
A shaped charge includes a charge case; a liner; an explosive retained between the charge case and the liner; and a primer core disposed in a hole in the charge case and in contact with the explosive, wherein at least one of the case, the liner, the primer core, and the explosive comprising a material soluble in a selected fluid. A perforation system includes a perforation gun, comprising a gun housing that includes a safety valve or a firing valve, wherein the safety valve or the firing valve comprises a material soluble in a selected fluid.
Abstract:
A technique facilitates perforation, including the perforation of a casing and formation. A shaped charge is formed with a case, a liner, and a high explosive material located between the case and the liner. The liner is formed of a powder material, e.g. a powder metal material. The powder material properties of the liner between an apex of the liner and a skirt of the liner may be selectively varied to provide a desired jet velocity and jet mass of the liner upon detonation of the high explosive material.
Abstract:
A technique facilitates perforation, including the perforation of a casing and formation. A shaped charge is formed with a case, a liner, and a high explosive material located between the case and the liner. The liner is formed of a powder material, e.g. a powder metal material. The powder material properties of the liner between an apex of the liner and a skirt of the liner may be selectively varied to provide a desired jet velocity and jet mass of the liner upon detonation of the high explosive material.
Abstract:
A technique facilitates perforation, including the perforation of a casing and formation. A shaped charge is formed with a case, a liner, and a high explosive material located between the case and the liner. The liner is formed of a powder material, e.g. a powder metal material. The powder material properties of the liner between an apex of the liner and a skirt of the liner may be selectively varied to provide a desired jet velocity and jet mass of the liner upon detonation of the high explosive material.
Abstract:
A shaped charge includes a charge case; a liner; an explosive retained between the charge case and the liner; and a primer core disposed in a hole in the charge case and in contact with the explosive, wherein at least one of the case, the liner, the primer core, and the explosive comprising a material soluble in a selected fluid. A perforation system includes a perforation gun, comprising a gun housing that includes a safety valve or a firing valve, wherein the safety valve or the firing valve comprises a material soluble in a selected fluid.
Abstract:
A technique facilitates perforation, including the perforation of a casing and formation. A shaped charge is formed with a case, a liner, and a high explosive material located between the case and the liner. The liner is formed of a powder material, e.g. a powder metal material. The powder material properties of the liner between an apex of the liner and a skirt of the liner may be selectively varied to provide a desired jet velocity and jet mass of the liner upon detonation of the high explosive material.